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Constitutive Modeling of Metal Matrix Composités Under Cyclic
Loading

AFOSR Grant No. F49620-93-1-0097DEF
(Duration: 1/1/93 - 12/31/95)
AFOSR Grant No. F49620-92-J-0463
(Duration: 9/1/92 - 12/31/96)

Principal Investigator: Dr. George Z. Voyiadjis
Department of Civil and Environmental Engineering
Louisiana State University
Baton Rouge LA 70803

OVERVIEW:
The objectives of this project are:
1. Formulation of a constitutive model for the analysis of fatigue damage in metal
matrix composites
2. Development of a finite element program in which the developed fatigue damage
model will be integrated
3. Involvement and training of graduate students in this advanced research in the

area of fatigue damage of metal matrix composites

The appendix contains copies of scientific articles which are representative of the publications
written during the course of this project.

SUMMARY OF ACCOMPLISHMENTS:

The research accomplished during the project phase is described below in three major
categories:

I Theoretical formulation of the cyclic and fatigue damage model

Il. Numerical Implementation of the model into a finite element code

1. Extent of the involvement and participation of graduate students
This is followed by a listing of the publications written during the course of this project, including
books, refereed journal articles, conference proceedings and presentations.

I Theoretical Formulation:

The theoretical formulation is based on the effective stress concept, and incorprates the damage-
plasticity theory for composite materials using a micromechanical approach. In the micromechanicd
approach the damage phenomenon due to applied cyclic/fatigue loading is considered at the
constituent level. For this purpose a homogenization technique in the form of the Mori-Tanaka
method is employed in order to allow for the distribution of the external applied loading to the




individual constituents by means of the so-called stress and strain concentration tensors. The
material behavior is then modeled at the constituent level based on the distributed loading. Elasto-
plastic deformations as well as damage initiation and evolution processes are considered in the
constituents individually. For this purpose individual constitutive equations to model the elasto-
plastic behavior of and the damage evolution process in the constituents are established for each
of the constituents. The damage evolution process includes the modelirg of damage initiation and
damage propagation up to final failure for which a specific failure criterion is applied. Through the
use of the employed homogenization technique the overall composite material behavior, damage
state and damage evolution is predicted based on the material behavior and damage evolution in
the constituents.

The developed micromechanical cyclic/fatigue damage model is based on a consisent formulation

in the framework of continuum mechanics and on thermodynamical principles. The formulation for
the damage evolution includes also the physical aspects of fatigue damage in metal matrix
composites. Through the use of individual damage variables in the form of second order tensors
for the constituents it is possible to modelanisotropic damage development and anisotropic damage

evolution in the constituents. Furthermore, the micromechanical approach allows to modeldifferent

damage and failure modes in the composite material based on the failure in the individual
constituent. Hence composite failure modes such as overload failure due to matrix cracking or foer

cracking, depending on the type of composite, maybe modeled. Furthermore he introduction of an

additional second order damage tensor for the fiber-matrix interface allows for the modeling of
damage and failure modes due to debonding as well.

. Numerical Implementation:

The cyclic/fatigue damage constitutive model! is implemented numerically and used to simulate
damage development and evolution in metal matrix compcsites. Numerical problems encountered
during the implementation and testing phase, such as numerical instabilities, divegence problems,
have been addressed and appropriate measures to resolve them have been taken and included.
Appropriate necessary material and model parameters are established based on available
experimental results. The numerical implementation is used to simulate various loading cases for
metal matrix composite specimen, and the results are then compared with the results from the
experimental investigations. Comparison of the results from the numerical simulations with those
from experiments show good agreement (see sample publications in the appendix) and
substantiate the capabilities of the model.
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Abstract— Based on a six parameter general anisotropic yield surface proposed earlier by Voyiadjis
and Thiagarajan (An Anisotropic Yield Surface Model for Directionally Reinforced Metal Matrix
Composites, Int. J. Plasticity [1995]), a cyclic plasticity model to model the behavior of direction-
ally reinforced metal matrix composite, has been proposed here. Apart from being able to model
different initial yielding behavior along different stress directions, a number of features have been
incorporated into the plasticity model. They include the usage of a proposed non-associative flow
rule, kinematic hardening rule of Phillips type, a modified form of the bounding surface model for
modelling the cyclic behavior, and the usage of a proposed form for evaluating the plastic modulus
for anisotropic materials. Previous experimental data have been used for the evaluation of the yield
surface parameters as well as those for the determination of the plastic modulus. The stress—strain
results generated from the model have then been compared with those from the experiments. The
behavior of the model under certain simulated cyclic loading situations has also been presented.

1. INTRODUCTION

This paper focuses upon the treatment of a metal matrix composite (MMC) as a con-
tinuum and is an extension of the work presented earlier by the authors (Vojiadjis &
Thiagarajan [1995]) wherein an anisotropic yield surface has been proposed with
application to continuous directionally reinforced metal matrix composites. The yield
surface proposed earlier has been correlated to the experimental observations of
Dvorak et al. [1988] and Nigam et al. [1993]. A model is proposed herein to account for
the material behavior of MMC which is transversely isotropic and subjected to cyclic,
proportional and non-proportional loadings. The cyclic plasticity model for the aniso-
tropic material is based on a modification of the bounding surface model proposed by
Dafalias and Popov [1976] for the case of isotropic materials.

It is also observed that the plastic strains that develop in an MMC are non-associative
in nature. To account for this, a non-associative flow rule is proposed here, based on
definitions of the yield and a complimentary yield function, termed as “‘constrained
yield function.” Also a suitable kinematic hardening rule is adopted here.

Based on the above observations the elastoplastic stifiness matrix is derived for the
cyclic plasticity model. This model has been implemented in a computer program to
generate the stress—strain curves under different loading conditions. These curves have
been generated along loading paths followed by Nigam ef al. [1993]. Plastic strains are
obtained and compared to those documented by Dvorak er al. [1988] and Nigam et al.
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[1993]. Other simulated loading conditions are applied to the proposed model and
results are presented here, to demonstrate the versatility of the model under various
loading conditions.

II. PROPOSED YIELD SURFACE

Voyiadjis and Thiagarajan [1995] proposed an anisotropic yield surface for con-
tinuous fiber reinforced metal matrix composites, using a fourth order anisotropic yield
tensor M. Two coordinate systems are used, namely the local coordinate system and
the global coordinate system (Fig. 1). In the local coordinate system, the coordinate
axes coincide with the three principal axes of material anisotropy. The orientation of
the fiber is defined in the global coordinate system. The loading is also defined with
respect to the global coordinate system.

The proposed yield function in the local coordinate axes is of the form shown below.

Miu5ijou—1=0 (1)

where &;; is the overall state of stress in this system. M is the fourth order anisotropic
yield tensor expressed as a function of two second order tensors a;; and b, as follows:

M = M(a,b) 2)

The expression for M is given as,

}'?ijkl = A(a;jau) + B(a,-kaﬂ) -+ C(agajk) + D(b,-jbu) (3)

where 4, B, C and D are constants and a; and b; are functions of the six strength
parameters k; (i=1, ..., 6). Three of these parameters are directly related to the axial
strengths and the other three are shear strength parameters. They are used to define
yvielding for an anisotropic material. These parameters are measured and determined
along the principal axes of anisotropy. a; and b, are given as follows:

ky 0 0O

aj; = 0 kz 0 (4)
0 0 ks

~

0 ki ks
by= ke 0 k. (5)
ks ks O |

Substituting (3) into (1) we can express the yield equation in the local coordinate
axes in component form as follows:

(4 + B+ Q) (k&%) + k353, + k363,)
+(24)(k1k2511522 + k1k3511533 + kak3522533)
+Q2(B+ C)krky + 4DK2)53, + (2(B + C)kyks + 4DK2) &3, ©)
+(2(B + C)ksks + 4Dk2)52, = 0.
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The constants 4, B, C and D are not material parameters. The possible choices of
combinations of these values are outlined by Voyiadjis and Thiagarajan [1995]. The
values of these constants chosen here for this implementation are 4 ==§l, B=C=land
D=1. These values reduce the above equation to the following form.

2 R -
=3 (83, + K353, + K3533)
2 _
-3 (kikaB11522 + kok3G20533 + kiks11533) (7
2 2 -2 .
° +§(k,k2+ki)a}2 +3 (kiks +I3)a; + 5 (kaks +k§)5%, — 1.0.

One can also express the yield equation in the global axes of reference as follows:
Uiijjk]Ukj -1= 0. (8)

The stresses are transformed from the global to the local axes of reference as follows
Gij = dypopedy )

where dj; are the coefficients of the orthogonal transformation matrix. Assuming that
® the fibers are aligned along the x-axis (1-direction) one can write,

dlj = (771,772,173) (10)

where n;, (i=1,2,3) are the direction cosines of the fiber in the global coordinate system.
A lamina of any arbitrary orientation is derived by rotating the principal axes of ani-

® sotropy about the z-axis(3-direction) of the global axes of reference. Hence one obtains
dy;=(0, 0,1). The terms of dy; can then be derived from the condition

dyidyi = bpq- (1)

Substituting for ;; in the yield (1) one obtains
qudipdjqj\?ijkfdbndznam -1=0. (12)

From the above equation M;;; can be expressed as,

Further details about the computation of the parameters, their reduction to certain well-
known yield criteria and their comparison with the yield surfaces obtained from experi-
mental evidence have been demonstrated in the paper by Voyiadjis and Thiagarajan [1995].

® [1l. THEORETICAL DEVELOPMENT OF THE CONSTITUTIVE MODEL

The description of the elasto-plastic behavior of the metal matrix composite, when
treated as a continuum is a complex task. The fact that MMC is transversely isotropic
and the presence of continuous fibers with their respective constraints, necessitates the

o usage of anisotropic hardening and non-associative flow rules. The formulation pro-
posed here is also intended to describe the behavior of MMC under cyclic loading
conditions. The bounding surface model is adopted here to simulate the mechanical
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behavior of the material. In this paper, the thrust is thus on transversely isotropic
materials.

II1.1. Elastic behavior . @

The elastic behavior of the composite material, treated as a homogeneous continuum
with transversely isotropic properties has been defined Walpole [1969] and is used here.
The linear constitutive relation is expressed as '

0ij = Cijrexs ' (14) °

where C is the fourth order elastic stiffness tensor relating the symmetric second order
tensors o and e of stress and strain, respectively. For a transversely isotropic material
the fourth order elastic stiffness tensor is given as follows:

Ciws = Ktjjta + Eljliy + 2m,Ey, + 2pEf (15)

where,
Lj=m;+ 2111;1' (}6)

Iij =Ny (17)
my; = & — nimy ' (18) e

1

E?jkl = 5 [m.-kmjy + mum; — mijmld] (19)
1

Ejy = 3 Ik + mali + mply + mjemy) (20)

and ‘K’ is the plane-strain bulk modulus, m, is the transverse shear modulus, p is the
axial shear modulus and E and v are the Young’s Modulus and Poisson ratio, respec-
tively, when the material is loaded in the fiber direction. For a transversely isotropic
material the plane-strain bulk modulus can be defined in terms of the other four elastic
constants. .

I11.2.. Non-associative flow rule

It has been well established by now that the determination of plastic strains, for any
anisotropic material in general, and a MMC in particular must adopt a non-associative P
flow rule. Dvorak et al. [1988] and Nigam et al. [1993] have experimentally demonstrated
this and have established that there is a tendency for the direction of plastic strains to
be more inclined towards the shear direction in a combined transverse tension-shear
loading situation. It has also been shown that there exists, to a large extent, plastic
inextensibility along the fiber direction.

To account for the above factors, a plastic potential function is proposed here, the ®
form of which is based on the proposed yield function. The nature of this potential
function is explained below.
11.3. Proposed potential function °
In order to determine the plastic strain increments (¢;) use is made of a non-
associative flow rule as outlined earlier such that,
o

.
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. 0G
e';-'~ =A— 21
/" Qoy @1)

where G is the plastic potential function. The potential function is defined later as a
function of the yield function and the constrained yield function. The constrained yield
function is defired such that it satisfies the condition of plastic inextensibility along the
direction defined by 1. This is accomplished by defining a function g which is of the
functional form of the yield function f. The function g is defined using the fourth order
anisotropic yield tensor M and a constrained stress term ry; such that,

g = riiMijure — 1. (22)

The constraint that is introduced in the stress term is that the plastic strain increment is
independent of the component of stress along a specified direction (defined here by ).
Following the procedure outlined by Spencer [1972] the constraint is incorporated into
the stress term as follows: '

rij = oy — I'nmj (23)

where Tn;7; is the reaction to an inextensibility constraint along the direction 7. Taking
the inner product on both sides of (23) with ni7; one obtains,

rimim; = oimin; — Tnimmay- (24)

One can impose the constraint is in the stress term r; as follows

riminj = 0. (25)

Substituting this constraint in (24) one obtains,
oyminy = Tnmgminy (26)

and using the condition n;m; = 1 it can be shown that
T = o;mim- (27)

Hence one can expand (23) as follows:
rij = 0y — (OrnMe) N7y ' (28)

Using the yield function and the function g defined above, the potential function G
can now be defined as follows,

" G=uwf+(10-w)g 0<w<10. (29)

In order to illustrate the capability of this potential function we consider the yield
function in the o, — 012 space. Assuming that n =(1,0,0) then fand g functions can be
represented as shown in Fig. 2. Since n = (1,0,0), this implies that the fiber is along the
1-direction and the stress along this direction oy, does not influence yielding. Hence in
Fig. 2 the yield function f represents yielding both axes whereas the constrained yield
function g is parallel to the oy;-axis, physically representing the requirement that oy
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does not influence yielding. The unit normals to these functions, which are also shown
in Fig. 2, can be expressed in tensor form as follows:

o | |
= 6%/11 5ol e
"= | ey

where rrf and n‘ represent the normality to the two surfaces represented by fand g.

) /
/ (4
4 // ///

/

x-y: general axes of reference
1-2: principal material axes
— — direction of fiber

Fig. 1. Local and global axes of reference for a single lamina.

(O Yield Surface

----  Constrained Yield Surface ‘g’
with n = (1,0,0)

Fig. 2. Illustration of non-associative flow rule in 013 — 0)3 space.
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The non-associativity of the flow rule in built into the definition of the potential
function through the factor w. Based on the flow rule, one can define a second order
tensor representing the direction of plastic strains as follows.

n,-j=wr,(j+(l.0-w)nfj- - (32)

The experimental evidence that the plastic strains are predominantly along the shear
direction can be incorporated into the flow rule by using a value of win between 0.0 and
1.0. A value of w= 1.0 gives a purely associative flow rule. Using a value of w=0.0 would
result in the usage of only the function g in (21). For this case it can be easily shown
that the plastic strains along the direction defined by n are zero. In the 011 — 02; space
in the local coordinate axes one thus obtains strains only along the shear direction.

The actual incremental plastic strain direction is observed to be different from both
rr{j and nf;. To simplify the issue, one can assume that this deviation is constant in any
stress space or loading level and measure the angle of deviation as 6, then w can be
measured as follows. One can then express 6 as follows '

cos (8) = nyn; (33)
= wnl; + (1 = w)nE)n; (34)
= wnll, + (1 = winf; (35)
cos(d) = w+ (1 — wnfm;. (36)

By measuring 6 at a defined loading level one can then derive the value of w that would
be appropriate.
~ Similarly for loading cases in the o2 — 012 space, oné can choose n= (0,1,0)
(although physically this does not represent the actual fiber direction). This enables one
to control the direction of plastic strains in this space and hence one can incorporate
the non-associativity of the flow rule in this stress-space. This is illustrated in Fig. 3.

(o]
12 4
n
A T
nij f
/ni]
- >
K/ %xn
Y

(O VYield Surface 't

ceen Constrained Yield Surface ‘g’

Fig. 3. Hlustration of non-associative flow rule in 02 ~ 012 space.
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The factor w can be adjusted to suit experimentally determined values of the plastic
strain. Constraints in multiple directions can simultaneously be defined using one
equation by appropriately modifying (23), details of whxch are not presented here. The
plastic strains can then be expressed as follows,

w <L>
CZ = H n,’j - : (37)
= %n,-j (38)

where L = ¢ = d;;n;; is the projection of the stress rate ¢;; on nyand ¢ > 0 (for plastic
loading after yielding). H is the plastic modulus. A detailed description of the deter-
mination of the plastic modulus for the anisotropic material is given later in this paper.

II1.4. Hardening rule

To determine the shape and location of subsequent yield surfaces as loading/
unloading progresses, the hardening parameter is introduced in the yield function.
From the experimental data of Dvorak er al. [1988] it has been demonstrated that the
predominant form of hardening is kinematic hardening. Also no significant distortion
of the shape of the yield surface has been reported. Using these observations as the
basis for formulating the hardening rule, it is proposed to use here a purely kinematic
hardening rule of the Phillips type. It is assumed that there is no significant change in
the size of the initial yield surface. Hence the effect of *“proportional hardening”—
which accounts for different expansion of the yield surface in different directions—is
ignored. This hardening is accounted for by modifying the form of the yield surface as
follows.

f= (O’ij - aij)M,'jk](Ukl - au) —. 10 . (39)

The evolution equation for the kinematic hardening rule based on the Phillips rule can
be expressed as follows.

Gij = poij (40)

The above equation can be rewritten in the following form as follows,
Gy = |G|l ’ (41)
where
lj = doy/||doy|| (42)

defines the unit tensor along the direction of loading. The norm of Gij, ||Grl), is found
from the consistency condition as follows.

of L O, _o

=G+ 3 G

(43)
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For finite increments of loading and rate independent plasticity the constitutive
relationships can be obtained by first expressing Af, for a constant M such that,

Af=flo+ Ao,a+ Aa) —f(o,a) =0.

Expanding the above equation one obtains

Mjju(oy + Doyj — aij — Aay) (o + Aok — au = Aay)

—ijk[(ajj - C!,'j)(O’k[ - au) -1=0. (44)

Substituting for Ac;; from (41), as it is rate independent, it can be shown that ||Aay]|
can be solved from the quadratic equation

al|Acy|* - bl Acy|| +¢ =0 (45)
where :
b =Mijk1(0'ij1kl + Ukllij) + M,‘ju(AU,'qu + I,'jAO’u) (46)
+Mjii(cijl + lijos) :
a =Mijulijlu (47)
¢ =Mjj(oijAoy + Aa,-jau) . (48)

+M,*jk1(A0’,'jA0’u) - M;,-u(Aa.-jau -+ aijAau).

Once the magnitude of ||Aay| is found, then the evolution of backstress for the yield
surface is obtained and updated as follows:

o = ag!d + Aayj . (49)

IV. CYCLIC PLASTICITY MODEL

_ The proposed plasticity model is further developed to model the behavior of the
composite material under cyclic loading situations. To model this behavior, a modified
form of the bounding surface model is used. The determination of the plastic modulus
H is the main aim of this section. ,

For initially isotropic materials the plastic modulus is usually expressed in functional
form as

H=H'[1 + g(6). /(6 )] L (50)

where 6;, and § are the proximity parameters and H* is the asymptotic value of the
plastic modulus. Various functional forms for g(é,) and f(6, §) have been proposed
by Dafalias and Popov [1976] and McDowell [1989]. Voyiadjis and Sivakumar {1991,
1994] had proposed a more general form for this expression as,

H=H[1 + g(6in, (). f(6in, 6)] (51)

where the extra term ( is a parameter introduced to blend the Phillips’s deviatoric stress
rate direction rule for the motion of yield surfaces, when the yield and the bounding
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surfaces are away from each other and the Tseng-Lee [1983] rule for nestmg of yield
surfaces, when the two surfaces are closer to each other.

For isotropic materials, the functional form of the plastic modulus as defincd by
Dafalias and Popov [1976] is of the form

H=H +h6/(6a-8). | , o (52)

In the above equation, H* is the asymptotic value of the plastic modulus, A is a positive
shape parameter and é,, is the initial value of the distance between the yield and the
bounding surfaces when plastic behavior begins in the loading direction. For isotropic
materials, the values of the three parameters H*, k and 6, would be the same, irre-
spective of the location of the current stress point on the yield surface, and for loading
along any direction. This is not the case for anisotropic materials.

IV.1. Plastic modulus for initially anisotropic materials

Most of the models mentioned above have been developed for initially isotropic
materials, although anisotropy is induced due to plastic strains subsequently. In such
cases it is assumed that both H* and §;, remain the same along any direction (at any
point on the yield surface). However for initially anisotropic or orthotropic materials
the asymptotic value of the plastic modulus H* need not, and in most cases will not,
be the same for all points on the yield surface. For materials where we assume the
behavior in tension and compression to be similar, it is reasonable to assume that at
mirror image points of the yield surface, this asymptotic value of the plastic modulus is
the same.

In Fig. 4, which shows the yield and the bounding surfaces in the o3 — 0y stress
space, points A and B are the location of the stress points for initial yielding for loading

p ©21
. (c_a) . ‘C 3
' H
a
(]
B 22> Subsequent Yiel Surface
<7 Subsequent Bounding Surtace
c
—
Initial Yield Surface A 22

Fig. 4. Hlustration to explain plastic modulus determination for an anisotropic material.
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in the 05, and oy respectively. From the two uniaxial stress-strain behaviors, it is
observed that the plastic modulus and hence the values of the three parameters that are
required to determine the plastic modulus, are different.

In order to incorporate the above phenomenon, a matrix/tensor form of H should be
used to provide for a selection of the hardening parameters corresponding to the t
of loading that the composite is subjected to. On the other hand the form of (51) that is
adopted for the determination of the plastic modulus is scalar and has three parameters
that are scalar in nature. In this paper the authors propose the following form for the
determination of the parameters, while maintaining their scalar nature. _

Consider the anisotropic yield surface proposed here in the (02 — 012) stress
subspace. It can be represented as an ellipse as shown in Fig. 4. One can assume the
general location of the yield surface as shown. The location of a general stress point o
when yielding has occurred—represented by point C in the figure—with respect to the
center of the yield surface a, is represented by (o — «). The distance of C from the
center of the yield surface is then given by

N = \/(a,-,i —-ay)(oy—ay) . (53)

A unit tensor along this direction can be written as

Ay = (o —aij)/7 - (54)

As mentioned earlier the observed values of the parameters involved in the determi-
nation of the plastic modulus are different along different loading directions. This
could be achieved by using the tensors in the form of second order tensors 6,3';!, h;j and
Hy;. These are then converted to a scalar valued form by taking the inner product
of these tensors with another second order tensor p; and representing the result as
follows: '

}? *=H ;jp,-j (55)
b= hypy; (56)
5o = 82, . (57)

The expression for the plastic modulus can then be expressed as

H=H"*+ hé/(§™ - 6) - (58)

where & is the distance between the stress point on the yield surface and the image point’
on the bounding surface, as explained later.

Two possible choices for p;; are proposed here and the option of using either one
would really depend on the observed physical behavior. :
IV.1.1. Choice of pi; = A;;. This choice of p; essentially states that the values of the
parameters are dependent on the distance of the location of the stress point on the yield
surface. This could be expressed as follows.

H=H(v). (59)
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i O3

~«~«=-3» Loading Path
( ) " Yield Surface

‘. _} Bounding Surface

Fig. 5. Loading path 1o illustrate appropriateness of the choice of py;.

It ensures that the value of the parameters along the axial directions, assume the
respective values. At intermediate points it is obtained through interpolation. Although
these conditions are satisfied, sometimes this is not a very appropriate choice, especially
under non-proportional loading. As shown in Fig. 5, if the composite is first loaded
uniaxially along the o5, direction into the plastic range, the only non-zero term of Ay is
As>=1.0. This ensures that the three values of the parameters chosen are those corre-
sponding to those for uniaxial loading along this direction. If the material is then
loaded along the o3 direction, the values of the parameters chosen would be close to
the values that existed for the previous loading, since the subsequent location of the
point on the yield surface is close to the previous point. However for loading along the
shear direction it would be more reasonable for the parameters to assume those values
corresponding to the shear direction. Hence this choice, which has been tried first in
this model and found unsuitable for the above reason, might not be the best choice.
IV.1.2. Choice of p;=1I; Since l; is the unit tensor along the loading direction the
choice of p;; = l;; would essentially ensure that the values of the parameters chosen are
dependent on the direction of loading. This choice is adopted here in the proposed
model, since it has been found to be more suitable. Also this model is thus open for
adoption of any other suitable choices.. '

IV.2. Determination of bounding surface

The initial bounding surface used here is an identical expansion of the initial yield
surface. This is done by determining the y-intercept of the bound lines at the zero
plastic strain level, in the stress—plastic strain curve. The bounding surface is expressed

as

S, Byj» @ijs byj) = 0 (60)
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where af} is the image point on the bounding surface and S is its center and

(ky 0 0]

5,'j= 0 Ez 0 (61)
0 0 k3]
[0 ke ks]

Eij= E4 0 ’Ee .- (62)
ks ks O

The values of k;(i = 1,...,6) are computed from experimental data along the respec-
tive axial directions. The initial yield and the initial bounding surfaces are assumed to
be congruent. This is to ensure that the normals at the stress point on the yield surface
and the image point on the bounding surface correspond to each other. For example, a
uniaxial state of stress would corrcspond to the same uniaxial state of stress on the
bounding surface.

The motion of the bounding surface is assumed to be dependent on the motion of
yielding surface and constrained such that when the two surfaces intersect, they do so
tangentially. This is ensured by finding the image point on the bounding surface from
the state of stress on the yield surface, such that the normals to the two surfaces at the
respective points are identical. Given the state of stress on the yield surface one can find
the normal to it nf and using this value one can locate the image point on the bound-
ing surface by solvmg a set of non-linear algebraic equations—using the Newton-
Raphson techmque Since the normals to the two surfaces are the same, f{, = n{j We
can express n’3 in terms of the bounding surface parameters and image point stress
values. It can be expressed in functional form as follows:

o 3fb aft

ny = / [y ll (63)

All but one of the equations represented by n which are non-linear functions of the
image point of stress on the bounding surface, are used along with the bounding sur-
face equation (which is also a non-linear function of stresses). All the equations for n”
cannot be used because they are interrelated by the expression n” '-’ =1 :

IV.3. Backstress for the bounding surface

The evolution of the center of the bounding surface in the stress space as loading
continues is related to the evolution of backstress for the yield surface as well as the
relative distance between the stress point and the image point. As given in Dafalias and
Popov [1976] it can be expressed as follows:

. . H*\ 6,40 o '

where

iy = (o — o) /Nlot, = ol o (69)
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Here we use a modified form as follows,

. . )ie c'r,,nf p
=Gy = | 1 = — ) ——2 . 66)
b ’ ( H)#un{z#’ . e :

As the two surfaces touch each other u;= 0 and hence B;j = a;; for all subsequent
loadings. From this increment, the total backstress for the bounding surface is then

computed.
The controlling parameter & in the determination of the plastic modulus H is then

found from the formula

6= \/(a'f, - 0rs)(ob, — 0rs) - ‘ (67)

V. ELASTO-PLASTIC STIFFNESS MATRIX

In order to determine the elasto-plastic matrix for the unidirectionally oriented
MMC lamina, one has to incorporate all the procedures outlined above. Small defor-
mations and rate independence of plastic strains are assumed. This allows one to use an
additive decomposition of the incremental strain tensor de;; such that,

de;j = de;j -+ de:", (68)

where déj; is the elastic part and dej; is the plastic part of the strain tensor. The incre-
mental stress—strain relations can be expressed as follows:

dO’ij = ijk[dC;d (69)
= Ci(dew — deyy) - (70)
Using (38) for the plastic strain part we can write the above equation as follows:

d
da,-j = ,-,H(deu - fnu) . (71)

Equation (71) may also be expressed as follows:

6ij = Cijxréxs — Cijmia6/[H . (72)

Taking the inner product of both sides with n; one obtains,

Gijmij = Cigemijés — Cijemija6[H = 6 . (73)
Or,
é(l + 9—'47-‘-%'!2-"-1) = Cijijéxl - (74)

From the above equation one can express ¢ as follows:
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Cijnijéxl
- U H. 75
H+ C,-jun,-jnu (75)

Hence the expression for plastic strains using (34) can be written explicitly as follows:

Coabeaapdeca
4 - 'ys
de}; = T Courorn nij . (76)

Substituting this in the equation for the incremental stress—strain relations one obtains,

Cabcdnardeca nu] ()

doij = Cju [deu “H1 CorsPiral

‘ - CimiCapedNapnirdecd
. =Gy - - . 78
uldd.ekl H+ Cpqr:npan: ( )
Interchanging the indices k! with cd in the second term of the above equation one
obtains,

_ CijedCabiiNabNcddens
or,
doy = Dpden (80)

where D}':j,f, is the elasto-plastic stiffness of the material and is expressed as follows:

CijeanedCabiiNab (81)

DEF = Ciju — .
i P H + Cogrshipghys

V1. NUMERICAL SIMULATION FOR GENERATING STRESS-STRAIN CURVES

The above model has been built into a computer program MC-PLAST, for the
generation of stress—strain curves. Input includes the elastic constants of the material,
the initial yield and bounding surface parameters, the values of the plastic modulus
constants and the non-associativity parameter w. This program also reads in a sequence
of loading in incremental form to be applied and outputs stresses, strains and plastic
strains at the end of each increment. ,

In order to exhibit the validity of the proposed model, the model here is compared
with results obtained from the experimental data of Dvorak er al. [1988] and Nigam et
al. [1993]. The parameters and constants have been determined from these experimental
data. Thz experiments had been done using boron-aluminum tubular composite
specimen having unidirectional lamina. The tibers are aligned along the direction of the
axis of the tube. '

Under plane stress conditions, the component form of the yield surface (7) reduces to
the following form: :
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()0t + Bok) - (§) tikeouion)

’ , (82)
+ (3) (kika +K2)53, - 1=0.

From the experimental data the following values of yield stresses have been taken.
oY, = 160.0 MPa, o}, = 45.0 MPa and o}, = 25.0 MPa. Using these data the following
values of k,, k, and k, for the initial yield surface have been computed as k; =0.0133,
ky=0.0471, k4=0.0421.

A number of Joading situations—both actual and simulated—are presented here in
order to show the validity and the stability of the model.

V1.1. Experimental comparison and discussions

The loading path shown in Table 1 that has been used by Nigam ez al. [1993] has been
used for comparison. From the data they had presented in the paper, the following
values for the bounding surface have been evaluated. o}, = 196.0 MPa, ob, =915
MPa and o8, = 34.0 MPa. This results in computed values of the initial bounding
surface parameters of k; = 0.0108, k; = 0.0232 and k4 = 0.0323. The values for ks, ks
and kg are not needed here and have been taken to be zero. However in order to make
- the initial yield and bounding surface congruent, a value of k; =0.0065 is chosen and kg is
modified to k= 0.0338. This does not effect the outcome of results of this model because
this modification affects the plastic behavior of the composite in the fiber direction.
However for the MMC, since a relatively high value of the yield stress in the fiber
direction is observed, it ensures relatively plastic inextensibility in the fiber direction.

Table 1. Actual experimental Joading sequence (and modelled) in
09 — 032 (Nigam'er al. [1993]) )

Point o2 o2
(MPa) - (MPa)

0 0.00 0.00
1 18.00 0.00

2 109.20 0.00

3 1.20 0.00

4 43.00 0.00

5 70.00 41.20

6 70.00 33.60

7 1.00 20.50
8 70.00 33.60

9 34.10 28.00

10 1.50 -19.00
11 8.00 -9.50
12 38.10 -9.40
13 66.60 36.00
14 62.00 29.75
15 35.00 29.60
16 6.50 -14.43
17 8.00 -9.50
18 38.00 -9.50
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The computation of the plastic modulus constants is the next step in this process, i.e.
the evaluation of and Hj; and hy;. Different values of these constants are evaluated from
experimental results of the uniaxial stress—plastic strain curves along different stress
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—— MOSS Generated Curves ( @=0.S }
= = . Mor-Tanska
- o PHA Model

e S R,
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-20.0

0.0000 0.0010 0.0030 0.0040

Fig. 6. Shear stress—plastic shear strain curve comparison of experimental and model generated results, using
non-associative flow rule.
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Fig. 7. Transverse stress—plastic strain curve comparison for experimental and model generated results, using
non-associative flow rule.




86 G. Z. Voyiadjis and G. Thiagarajan

directions. The values of these constants have been evaluated as follows. Hj, = 1,600,
000 MPa, H3,=12,000 MPa and H},=6000 MPa and the values of the other para-
meter hy; are h);=9,650,000, o= 90,000 and h,, =40,000 MPa, respectively. The other
values of this tensor are assumed to be zero.

60.0 T T

o——0 Experimental - Nigwm ot ol (108)
—— hicdel Generated Curves (@uld )
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Fig. 8. Shear stress-plastic shear strain curve comparison of experimental and model generated results, using
associative flow rule.
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Fig. 9. Transverse stress-plastic strain curve comparison for experimental and model generated results, using
associative flow rule.




A cyclic anisotropic-plasticity model 87

In order to incorporate the non-associativity of the flow rule that has been built into
the model, the value of w has been chosen, by trial and error, as w=0.5.

Figure 7 shows the comparison between the experimentally obtained and model-
generated g3, — €}, curve and Fig. 6 shows the same for 021 — 2¢},. From the com-
parison of the experimental results of Dvorak et al. [1988] and Nigam ez al. [1993] and
the model generated stress—strain curves, a reasonably good correlation is observed. In
Figs 6 and 7 the prediction of plastic strains for the case of uniaxial loading and
unloading in the o, direction (loading path 1-2, 2-3) is good. For reloading along a
multi-axial path 4-5, where load is applied simultaneously along the o3 and o,
directions, the model has been able to successfully predict the onset of yielding, which
in the authors’ opinion is a very significant fact, and the total magnitude of plastic
strains reasonably well.

The tendency for ratchetting to occur for cyclic loading, for five cycles of loading
path 12-13-14-15-16-17 has also been observed. But the tendency to stabilize has
been different for the experimental and model predicted results. This is because a
drastic degradation of elastic behavior has been observed in the experimental results. -
For the results of the experimental behavior the readers are referred to the paper by
Nigam er al. [1993]. It has been unable to measure this degradation in elastic behavior
and incorporate them in the model, where a constant elastic behavior is assumed
throughout the entire loading sequence.

Another important feature that has been proposed here and used successfully is the
non-associative flow rule for the prediction of plastic strains. In order to demonstrate
that we must adopt a non-associative flow rule, the model is run with the same loading
situation, but with w= 1.0, which results in the usage of an associated flow rule. Figures 8
and 9 show the comparison of model and experimental results for this case. For a pure
associative flow rule (w=1.0) it is seen that plastic strains e, have been overpredicted.

100.0

—— Simulstec Loading - Medel

00| - } 1

6,,(MPa)

-100.0 1 d .
<0.0010 <0.0005 0.0000 0.0005 0.0010

€

Fig. 10. Stress—plastic strain curve for simulated uniaxial cyclic loading of o5, stress only.
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A factor of w=0.5 which incorporated non-associativity into the model has been
successfully used to predict the plastic strains reasonably in this direction.

- A number of simulated cyclic loading situations have been run on this model. They
are uniaxial cyclic loading in the o2, and o, directions and also radial cyclic loading in

. 400 ————— — . . . .

200 | ;
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S 00} 1
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Fig. 11. Stress-plastic strain curve for simulated uniaxial cyclic loading for shear stress only.
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Fig. 12. Stress—plastic strain curve for simulated radial stress loading in o - 02;.
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the (022 — 012) space. Figures 10 and 11 show the simulated model predicted response
under uniaxial cyclic loading in the o2, and o, directions, respectively. Ratchetting
behavior under constant mean stress is observed. Figure 12 shows the same for radial
cyclic loading in the (022 — 02;) stress space. It is observed that the model is able to
predict different behavior in different stress spaces during the loading process.

The model presented here will be used in the micromechanical damage model
proposed by Voyiadjis and Kattan [1993]. The proposed model will be used to
characterize the in situ behavior of the matrix within the fiber. This is being currently
investigated by the authors.

V1.2. Comparison with other proposed models

The plastic strains predicted by the proposed model have also been compared with those
predicted by two micromechanical models, namely the Periodic Hexagonal Array (PHA) -
model developed by Dvorak and Teply [1985] and the self-consistent scheme of Hill [1948,
1965] and Budiansky [1965] using the Mori-Tanaka [1973] averaging scheme for the eva-
luation of the concentration factors by Lagoudas er al. [1991). The data for the self-con-
sistent and the PHA model have been taken from the paper by Lagoudas ez al. [1991).

This comparison has been made in Fig. 6, which shows the comparison of the shear
stress—plastic shear strain curves generated by the models along with those from the
experimental data. It is seen that while the Mori-Tanaka and the PHA model results
underpredict the plastic strains, the proposed model using the non-associative flow rule
comes closer in its prediction. In the transverse direction Fig. 7 the PHA and the pro-
posed model predict the plastic strains fairly well whereas the Mori-Tanaka model
underpredicts here also. The PHA and the Mori-Tanaka model results have not been
shown here to avoid congestion.

VII. CONCLUSIONS

This proposed continuum model for the elasto-plastic behavior of an MMC has been
able to successfully capture and model certain trends and characteristics that have been
observed experimentally. Primarily they are, the usage of a proposed non-associative
flow rule to predict plastic strains, incorporation of the fiber-direction plastic inexten-
sibility criterion, the usage of a proposed criterion for evaluating the plastic modulus
and its incorporation into the cyclic plasticity model. Comparison with experimental
data has shown reasonably good correlation and certain simulated cyclic loading
situations demonstrate ratchetting behavior. One feature that is observed in the
experimental results, namely the degradation of elastic constants, has however not been
incorporated here as it has been found to be very difficult to measure them.
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ABSTRACT: Improvement in design and enhancement in performance of aerospace vehicles calls
for the development of advanced materials capable of sustaining the arising loading conditions
while maintaining their structural integrity. Special consideration has to be given to the behavior
of such materials under fatigue loading conditions which are dominating the flight regime loads. A
micro-mechanical fatigue damage model for uni-directional 1aetal matrix composites is‘proposed.
Damage evolution is considered at the constituent level through the application of the Mori-Tanaka
averaging scheme. Individual damage criteria for the constituents are proposed and employed to
define damage evolution equations for each of the constituents. Numerical results for high cycle

fatigue loading are presented for variations in material and model parameters.
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Introduction

With the increase in performance of aerospace vehicles design factors such as weight and material
strength play an increased role in the design philosophies of such structures. Along with such drastic
performance enhancements appropriate light weight materials need to be developed that are capable
of performing under such conditions as those occurring during flight while retaining their structural
integrity. Such candidate materials have been identified among the composite materials, especially
in the area of metal matrix composites. Special consideration has been given to Titanium Matrix
Composites (TMC) due to the fact that these materials maintain their excellent strength to density
ratio even at elevated temperatures. This intrinsic material property has drawn attention from
the turbine engine manufacturing industry for potential use of such materials in advanced aircraft
turbine engines. The main reason for this success is attributed to the tremendous reduction in
weight of the key engine components leading to a possible increase in engine performance and/or a
reduced fuel consumption. Titanium matrix composites offer higher mechanical properties, better
dimensional stability, and strength retention at elevated temperatures, such as those occurring in
turbine engines, as compared to their monolithic counterparts. Nevertheless the use/employment of
MMC'’s and TMC's still has major drawbacks. First, the production/manufacturing costs for such
material are still high due to the special manufacturing processes involved. Second the employmen{
of such materials in vital components of an aircraft or space vehicle, such as a turbine engine,
requires a thorough understanding and control of the material behavior under extreme loading
conditions such as those occurring during the regular service life of such vehicles. This calls for the
development of material models which are capable of predicting real life behavior of such materials
with a deterministic margin of risk. As of today the behavior of such MMC’s and TMC’s is not yet
fully understood and appropriate material models still lack reliability and applicability as compared
to those of their monolithic counterparts. Considerable experimental as well as theoretical research
effort is put forward to better understand and analytically model metal matrix composites in order
to provide a more efficient use of the tremendous potential contained in these new materials. In
particular, the literature lacks a consistent and systematic approach to the analysis of cyclic damage
(low-cycle / high-cycle fatigue) in high temperature metal matrix composites. It is this area which

is addressed in this paper, especially the consistent development of a fatigue damage model for




uni-directional Metal Matrix Composites.

Cyclic/Fatigue Damage Models in the Literature

Reviewing the literature on the subject of fatigue in engineering materials reveals that the
explanation of fatigue phenomena and the prediction of fatigue life have been tiie focus of im-
mense research efforts for the last 50 years. The two major analytical approaches used are the
phenomenological approach and the crack propagation approach. The former is concerned with
lifetime prediction for complex loading histories using existing lifetime test data, mostly S~ N data
for constant amplitude cyclic loading. The second approach is concerned with predicting the growth
of a dominant crack due to cyclic-load which is not the case for metal matrix composites.

Almost all of the known fatigue damage models for composite materials are based on the models
developed for their isotropic counterparts (Owen and Howe 1972, Subramanyan 1976, Srivatsavan
and Subramanyan 1978, Lemaitre and Plumtree 1979, Fong 1982, Hashin 1985, Hwang and Han
1986a,b, Whitworth 1990). Lack of theoretical knowledge and sufficient experimental tests on com-
posite materials led to the application of known fatigue damage models to predict fatigue lifetime
of such materials, despite the fact that the fatigue behavior of composite materials is quite differ-
ent from that of isotropic materials, such as metals. With improvement in theoretical knowledge
on composite materials and experimental equipment, a lot of studies have been conducted involv-
ing fatigue life and residual strength degradation, modulus degradation and residual life theories.
However, it was soon recognized from the obtained models that the material structure of such com-
posites has to be included in the development of fatigue damage models in order to arrive at more
feasible and reliable models. Up to date there is no universal fatigue damage mode] based on the
micro-structure of the composite material capable of predicting fatigue life time for general fatigue
loading with reasonable reliability.

Arnold and Kruch (1991a,b) presented a phenomenological, isothermal transversely-isotropic
differential continuum damage mechanics (CDM) model for fatigue of unidirectional composites.
This model is based on the CDM fatigue models for isotropic materials developed at ONERA
(Chaboche and Lesne 1988, Chaboéhe 1988a,b, 1987, Lesne and Savalle 1987, Lesne and Cailletaud
1987). They considered the metal matrix composite as a pseudo homogeneous material with locally

definable characteristics. Such local characteristics have been considered in the form of a directional




tensor representing the fiber direction. Furthermore the concept of anisotropic failure surfaces
has been introduced into the model based on deformation theories for high temperature metal
matrix composites of Robinson et al. (1987) and Robinson and Duffy (1990). Despite the rigorous
development the proposed model has two major drawbacks: (1) the expensive experimental setup
and exhaustive experiments needed to obtain the material parameters used in the model equations,
and (2) the employed scalar measure for the damage variable. Recently Wilt and Arnold (1994)
presented a fatigue damage algorithm which employs the fatigue damage model developed by Arnold
and Kruch (1991a,b). They implemented their algorithm into the commercial finite element code
MARC and used it to analyze a cladded MMC ring. Results were presented on a qualitative basis
since no experimental results are available.

Nicholas (1995) recently reviewed fatigue life time prediction models for TMC’s which use fun-
damentally different approaches. His investigation showed that various models are based on a single
parameter and have limited applicability. Two other models, a2 dominant damage model (Neu 1993)
and a life fraction model, show applicability to various loading ranges, frequencies and temperature
profiles. Neu (1993) pointed out that despite the fact that there exist several damage mechanisms
it is possible to consider the most dominant ones for modeling and include the influence of others
in those since their behavior might be similar. His model was able to match experimental data for
isothermal and thermo-mechanical fatigue for low-cycle fatigue experiments. The life fraction mod-
els, which are based on the fact that fatigue damage accumulates simultaneously due to independent
mechanisms, are able to model only specific composite layups for which their parameters have been
calibrated. Various other fatigue investigations have been performed but their focus is on specific
ply-stacking sequences of interest at the time of the investigations. In general it is found that even
though micro-mechanical effects or mechanisms are considered and incorporated into the models
there does not yet exist a true micro-mechanical fatigue damage model which considers the material
behavior and damage evolution in the constituents individually. The following proposed micro-
mechanical fatigue damage model is intended to exactly fill in this gap. It is considered as a first
step along a consistent route to develop a universal micro-mechanical fatigue damage model capable

of modeling various loading conditions including thermo-mechanical effects as well as environmental




effects which occur during the service life of dynamically loaded composite structures.

Damage Mechanics Applied to Composite Materials
Kachanov (1958) pioneered the idea of damage in the framework of continuum mechanics. For
the case of isotropic damage and using the concept of effective stress, the damage variable is defined

as a scalar in the following manner

p=tA (1)

A

where A is the effective (net) resisting area corresponding to the damaged area A. Using the
hypothesis of elastic energy equivalence (Sidoroff 1980), the effective stress & can be obtained from
the above equation by equating the force acting on the hypothetical undamaged area with the force
acting on the actual damaged area.

In a general state of deformation and damage, the scalar damage variable ¢ is replaced by a
fourth-order damage effect tensor M which depends on a second-order damage tensor ¢. In general,

the effective stress tensor & is obtained using the following relation
6=M:o . (2)

where (:) indicates tensor contraction over two indices. The nature of the damage effect tensor M
is discussed in the literature by Voyiadjis and Kattan (1992, 1993a).

In general the analysis of composite materials falls into two categories. The first category consists
of all approaches that employ the continuum concept (Talreja 1987, Christensen 1990), where the
composite system is treated as one continuum and the equations of anisotropic elasticity are used
in the analysis. The second category encompasses all approaches that use micro-mechanical models
together with averaging procedures and homogenization techniques (Poursatip et al. 1982, Dvorak
and Bahei-El-Din 1982, 1987, Dvorak and Laws 1987, Dvorak et al. 1985) to describe the material
behavior. In these models, the composite is considered to be composed of a number of individual
phases for which local equations are formulated. Employing a suitable homogenization procedure
then allows one to analyze the material behavior of the entire composite system based on the local

analysis.



Dvorak and Bahei-El-Din (1982, 1987) employed an averaging technique to analyze the elasto-
plastic behavior of fiber-reinforced composites. They considered elastic fibers with an elasto-plastic
matrix. However, no attempt was made to introduce damage in the constitutive equations. Voyiadjis
and Kattan (1993b), Voyiadjis et al. (1993), Voyiadjis and Kattan (1993c) introduced a consistent
and systematic damage theory for metal matrix composites utilizing the micro-mechanical composite
model of Dvorak and Bahei-El-Din (1987). They introduced two approaches, referred to in the
literature as the overall and the local approach, which allow for a consistent incorporation of the
damage phenomenon in a composite material system.

The overall approach (Kattan‘énd Voyiadjis 1993) to damage in composite materials employs
one single damage tensor to reflect all types of damage mechanisms that the composite under-
goes like initiation, growth and coalescence of micro-voids and micro-cracks. Voyiadjis and Park
(1995) improved the overall approach by including and adopting a general damage criteria for or-
thotropic materials by extending the formulation of Stumvoll and Swoboda (1993) to MMC'’s. In
this improved model all damage types are considered but the model lacks the consideration of local
(constituent) as well as interfacial damage effects. In contrary to the overall approach the local
approach (Voyiadjis and Kattan 1993d) introduces two independent damage tensors, ¢™ and &',
and hence two independent damage effect tensors, M™ and M/, to reflect appropriate damage
mechanisms in the matrix and fibers, respectively. It is this latter approach which is employed in

the proposed micro-mechanical fatigue damage model.

Micro-Mechanical Fatigue Damage Model

Stress and Strain Concentration Tensors ~ In the derivation of the model, the concept of effective

stress (Rabotnov 1968, Sidoroff 1980) is used. The effective stress is defined as the stress in a
hypothetical state of deformation that is free of damage and is mechanically equivalent to the
current state of deformation and damage. In a general state of deformation and damage, the effective
Cauchy stress tensor & is related to the current Cauchy stress tensor by the linear relation given as

in equation (2). In the case of composite materials, similar constituent (local) stress relations hold




for the matrix and fiber stress tensors ™ and o/, respectively.

" = MM:o™ (32)

& = Mol (3b)

H

where M™ and M/ are fourth-order local damage effect tensors for the matrix and fiber materials,
respectively. The damage effect tensors M™ and M/ are dependent on second order damage vari-
ables ¢™ and @7, respectively. These latter second order tensors quantify the crack density in the
matrix and fibers, respectively (Voyiadjis and Venson 1995). The crack density tensors incorporate
both, cracks in the fiber, matrix, as well as those due to fiber debonding. A complete discussion on
these tensors is given in the work of Voyiadjis and Venson (1995).

In the proposed model the matrix is assumed to be elasto-plastic and the fibers are assumed
to be elastic, continuous and aligned. Consequently, the undamaged (effective) incremental local

(constituent) constitutive relations are given by:

dg™ = D™ :d&™ (4a)

do! = E':.de/ (4b)
The fourth-rank tensors D™ and B/ are the undamaged (effective) matrix elasto-plastic stiffness
tensor and fiber elastic stiffiness tensor, respectively. The incremental composite constitutive relation

in the damaged state is expressed as follows
do =D :de (5)

where de is the incremental composite strain tensor.

In order to arrive at the local (constituent) relations, given by equations (4), a homogenization
technique in the form of the Mori-Tanaka averaging scheme (Chen et al. 1992) is employed. Through
the use of the so-called stress and strain concentration tensors, a relationship between the global

applied effective composite stress, &, and the local effective stress in the constituents, &, is



obtained as follows

™ B™":& (6a)

/ = B :& (6b)

where B/ and B™ represent the effective stress concentration tensors connecting the local effective

stresses with the global effective stresses. In the damaged configuration the following relations are

obtained
o™ = B™:o A (7a)
o/ = Bl:o (7b)

Combining equations (2), (3), (6) and (7) one obtains the relation between the local stress concen-

tration tensor and the local effective stress concentration tensor as follows

B = M.B. (8a)
M™:

Bm

M
B™:M (8b)

Similar relations may be obtained for the deformations in the effective (undamaged) configuration

as follows
g™ = AT:E (92)
e = Al:¢ (9b)

where A/ and A™ represent the effective strain concentration tensors connecting the local effective

strains with the global effective strains. In the damaged configuration the relations are given by

" A" € (10a)

ef = Al:e (10b)




and furthermore

fl

2
;:l
%

AS (11a)

A™ = M™:A":M! (11b)

Effective Volume Fractions — During the process of damage evolution in the material another
phenomenon has to be considered. As damage progresses within each constituent the effective load
resisting area/volume changes while the gross area/volume remains the same. Since the distribution
of forces/stresses to the constituents depends directly on the area/volume intact to resist an applied
force/stress there is a change in the allocation of the external applied force/stress to the constituents.
This redistribution of force/stress due to progressing damage can be accounted for by defining the
so-called effective volume fractions which are based on the updated damage variable during each

load/stress increment. Expressions for the effective volume fractions are given as

1- !
- e
cm_ q

q (12)

(1-¢m)+(1-¢l)S

g
and

Ef = 1 . ¢£(7 ™
1-¢l)+0- e

(13)

where cz and c;" are defined as the volume fractions for the fiber and matrix in the virgin material,

respectively. The expressions for ¢g; and ¢£q are given as

f
o = el y
TFY T (142)
™
@ = Temall (140)

with ¢£,i, and @7, defined as the critical damage tensors for the fibers and the matrix, respectively,

and || - ||12 defined as the Ly — norm of the quantity enclosed in the vertical bars.

Proposed Micro-Mechanical Fatigue Damage Model - The proposed fatigue damage criterion g




is considered as a function of the applied stress o, the damage parameter ¢, the damage hardening

parameter &, and a tensor quantity <, which is explained below. The equation for g is defined by:

g=F"-1 (15)
where F is defined as
F = wilwy! (Ve = wt) (Y = ) (16)

The term (Yi;~ k) represents the translation of the damage surface and therefore accounts for dam-
age evolution during cyclic loading. The tensor Y represents the thermo-dynamical force conjugate

to the damage variable ¢ and is defined as

Y=

[ SRR

(Cca Cabpq Mqul Okl + Opg Muqu Cuvab Ocd) e (17)
ij

with Ciji = Eij;,, while the quantity = can in principle be compared to the backstress in plasticity

theory hence representing in this case the center of the damage surface in the thermo-dynamical

conjugate force space Y. Its evolution equation is given as follows
Vi =<y (18)

similarly to the evolution equation for the backstress in plasticity. The tensor quantity w;; accounts

for the anisotropic expansion of the damage surface and is given as follows
wij =i + Vi (19)

where the tensor u is defined as

K

&)
wij = Ag) ) (-X(z_)) ; ~ (nosum on i) (20)

The tensor V;; can be interpreted physically as the damage threshold tensor for the constituent




material considered, while x represents the effect of damage hardening and is defined as follows
@2 t .
n=/ Y:d¢=/Y:¢dt (21)
1 0

Damage hardening is based on the increase in the initial damage threshold due to micro-hardening
occurring at a very local material level (Chow and Lu 1989). The parameter 7;; in equation (16)
adds to this hardening behavior due to the movement of the damage surface in the direction of
the evolution f damage. The remaining variables n, A;, n;, & ana ¢ are material parameters to be
determined for each individual constituent. Especially the form of the variable §; will be discussed
below in the numerical implemeniation.

Based on the thermo-dynamical principles a potential function for each constituent is defined

as (Voyiadjis and Kattan 1993d)
Q=TP+T%- A, f - Azg (22)

where I1?, I19, f and g represent the dissipation energy due to plasticity, the dissipation energy
due to damage, the plasticity yield surface for the constituent material considered, and the da{nage
surface, respectively. For loading in the elastic regime (high cycle fatigue) the terms involving plastic
dissipation energy are neglected. The term I1¢ representing the dissipation energy due to damage

is given as
Hd = Y,‘j 4.5,'_7' + Rk . (23)

Applying the theory of calculus of several variables to solve for the coefficients A; and A, yields

0N
37, = 0 (24)

from which an expression for the damage increment is obtained as follows

0g

Y, (25)

doi; = dAs




Hence dA; may be determined using the consistency condition

dg—gi do +gi d¢+-g%dn+g%:d7=0

Substitution of the appropriate terms (equations (18) and (21) into equation (26) yields

g

dg = % 4o+ 2. d¢+6gY dg - ¢ 2 1 dgp =0

o0 8¢

Replacing d¢ with equation (25) an expression for dA; is obtained as follows

T?fi-;dakl‘
o a I
(BL+vu g -cdt) %

dAy = —

(28)

Backsubstitution of equation (28) into equation (25) yields an expression for the damage increment

for the appropriate constituent in terms of a given stress increment as

0 <)
Bor; By 4Ok

d¢mn ==
2] 1% [é) 3
('aﬁj +Yi5—c E‘)%) 57%
or
doi; = Vi doy
where
dg B
o B Bo
ijkl = = P Y 8 8
( brs + Yrs K CE?‘L) m}qj
and
1 _ oM,
Y,, = -[ Eabpq M, pokl Okl + Opgq MuquEuvab } =
2 a¢rs

(29)

(30)

(32)

(33)

As stated elsewhere (Stumvoll and Swoboda 1993) a damaging state in a constituent is given if for




any state the damage criterion is satisfied
g=0 (34)

for that specific constituent. In general four different loading states are possible

g<o0 (non-damaging loading) (35)
g=0 ﬁ dY;; <0 (elastic unloading) . (36)
oY},
dg .
g=0 = dY; =0 (neutral unloading) (37)
0Yy;
g=0 -(,;%—,7-— dY;; >0 (loading from damaging state) (38)
ij

Using equation (29) the damage increment per fatigue cycle maybe obtained by integration over

one stress cycle as

o Tmi
d¢1.7 mazr min

Fivi Wijk dog + / Wijk dok (39)

where ;54 is given according to equation (31). The dependence of damage on the mean stress and

the amplitude of the stress cycle is implicitly included through the integration of equation (39).

Return to the Damage Surface

In the numerical implementation of the model it appears that after calculating the damage
increment d¢ for the current stress increment do and updating all the appropriate parameters
depending on the damage variable ¢, the damage surface is in general not satisfied. Therefore it is
necessary to return the new image point to the damage surface by employing an appropriate return
criteria.

At the beginning of the (n + 1)* increment we assume that the damage surface g is satisfied
g™ (,(n), ¢<n),,i(n),7(n)) =0 (40)

Applying the stress increment do (assuming a damage loading) will result in a damage increment

d¢ which will be used to update the values for k and 4. Checking the damage surface (equation 15)




with the updated values for o, ¢, k and 4 will in general yield

g+ (o.(n+1)’¢(n+1)’~(n+1),7(n+1)) >0 (41)
where

o) = gm) 4 dg(n+l) (42)

¢(n+1) = ¢(n) + d¢(ﬂ+1) (43)

1) o () 4 ga(ntD) (45)

Using a Taylor series expansion of order one expands the left hand side of equation (41) to yield

gm+D) (a(n) +dot) oM 4 gan D) k) 4 gint) 4(0) 4 d7(n+1))

dg l(ﬂ)

(n)
= (8) [ (n) p(m) mam)) L 99 (n+1) | 99 (n+1)
g (a L™, k) )+8a do™*) + 22| de

(n)

(n)
. _Z% dx+D) 4 g%l v+ 5 0 (46)

Recalling the relationships in equation (18) and (21) relation (46) is given by
g+ (a<"> +do™tD) g™ 4 g+ kM) Ly ) gen+l) Am) 4 d¢(n+1)) >0 (47)

The return to the damage surface, hence g™t = 0, is now achieved by adjusting the damage

increment d¢ using a linear coefficient a such that

gt (a(") +de®™t) o™ 4 adpt) kM 4 oY) dp™+h) 4(n) 4 acdd)("“)) =0
(48)

Substitution of the appropriate expressions for the derivatives in equation (48) as well as equa-

tion (21) and (18) and setting the left hand side equal to zero allows one to solve for the unknown




coefficient & such that

( o 4 8|™ o (n+1))
(49)
53 (n) yn )+ c ggl(")) d¢(n+1)

(n)

a=—(%

Numerical Analysis

The aboye model is implemented into a numerical algorithm and used to investigate the fatigue
damage evolution in the individual constituents of a uni-directionally fiber reinforced metal matrix
composite. No assumption, except those implicitly included in the stress and strain concentration
tensors based on the Mori-Tanaka averaging scheme (Chen et al. 1992) are made. The implemen-
tation is performed using a full 3-D modeling hence avoiding any assumptions to be made upon
simplification of fourth order tensors to two-dimensional matrix representation. The Mori-Tanaka
averaging scheme is implemented using the numerical algorithm according to Lagoudas et al. (1991).
Only an elastic analysis is performed at this time. Since no experimental data is yet available a
parametric study is conducted in order to demonstrate the influence of various parameters on the
damage evolution in the constituents. The constituents are assumed to consist of an isotropic mate-
rial. The material used in the analysis are given in Johnson et al. (1990) and are shown in Table 1.

The fatigue loading is applied in the form of a sinusoidal uni-axial loading given as

) 6
Oy = Oyjmean + 0,54 SID 7 (50)
where
O11,mean = 550 M Pa and 0,; ..., =0 (fori,5 # 1)
011,4 =450MPa ando,; , =0 (for 4,7 # 1)

For the numerical integration scheme an adaptive algorithm was implemented such that the stress




increments where taken as

g

- _tj,mean .
Ao, = T if 0,; <Opeony

Ao, =1MPa if 0,; < Opeany; (damage state)

(non-damage state)

during the loading phase to the mean stress and

ij

Ao, = |sin 6+46) _ sin (—q— 0, , (during cyclic loading)
27 27 b

with
AG = -;—0 (during a non-damaging state)
Af = 9_30 (during a damaging state)

for the cyclic loading phase. Here 6 represents simply the phase angle during the cyclic loading.
The above limit values were adopted based on a numerical investigation which yielded satisfactory
behavior of the model using the above values.

The damage criterion is evaluated within each increment and a return criterion as described in
equations (48) and (49) is applied if |g®*!)| 2 1073, Except at the very first incident of damage
this criterion shows satisfactory performance during the application of the return criterion (equa-
tions (41) - (49)). The numerical noise at the initiation of damage has been investigated and it
is found that a reduction in the step size for the stress increment reduces the numerical error ap-
propriately to fall within the specified bounds. This phenomenon is not observed at any other
time during the analysis (Figure 1). It is attributed to the point of discontinuity in the damage
criterion at the wake of damage. The flexibility of the model is demonstrated through a parametric
study based on variations in the parameters Aand{. For the parametric study the values of all the
parameters except for one are kept constant in order to study the effect of a single parameter on
the model as shown in Table 2. The parameters § ! and ¢" account for the variation in the damage
evolution with respect to the number of cycles, especially the increase in the damage rate during
the fatigue life of a material. The specific form of the parameters 5’ and ¢ is obtained from exper-

imental curves, such as those shown in Figures 4 and 5, where the fatigue damage in the material




is plotted versus the number of applied cycles. Since fatigue damage evolution for a specific stress
ratio R is dependent on the applied mean stress as well as the stress amplitude, such experimental
curves have to be obtained for different applied mean stresses and stress amplitudes. The damage
¢ in the material during the fatigue life maybe obtained by using the stiffness degradation or an
equivalent method, such as sectioning and subsequent SEM evaluation of the specimens for damage
quantification. Upon inspection of the obtained experimental curves it is observed that basically
three different regions can be distinguished during the fatigue life of the material (Figures 4 and 5).
These different regions pertain to the damage initiation phase (Phase I), the damage propagation
phase (Phase II), and the failure phase (Phase III). A distinction for these regions maybe made by
specifying bounds in the form of the number of cycles such as N; and N, as indicated in Figure 4.
This is done in general by visual inspection using engineering judgment and physical intuition. Us-
ing these curves an evolution equation for £ with respect to the number of cycles N, the applied
mean Stress Omean and the stress ratio R maybe established. For the current analysis, since no such
experimental data are available, the following forms for the parameters {f and £¢” in terms of N,

and N; have been used and are given as

m N =N n N[ =N\ .m -
gN—N{"—la +(1 Nl,,,_1>b A (1< N<N]) (51)
m m ™ N-NT - ~ ™
& =€ + A +(—,-n———1-m— Ag (NI <N < NJ) (52)
N2 —Nl
Ev =& +A4§ +(N_5"TJ\17_1’"> AL (N>Ny) (53)
N-1
c{v=£é+(—-,——) Ag] (1<N<N)) (54)
N-1\
£{v=:é+(N, 1) ag (N > N) (55)
7_
where
a =§ + ‘—Nl-—log (‘N‘lﬁ) Afl (56)
b =¢§ +A€1 +(W) A§2 (57)

The results for the parametric study in order to investigate the influence of the model parameter



¢ on the damage evolution in the matrix are shown in Figure 3 with all other parameters kept
constant. Varying the value of the parameter A and keeping £y constant will result in the curves
shown in Figure 2. Only the damage variable ¢y is shown since the other components of ¢ are
equal to zero or their value is smaller by a magnitude of 100. The reference frames of the damage
tensor and the material system are identical, hence “1” representing the fiber direction while “2” and
«3” indicate the transverse directions. For clarification it should be emphasized that the plateaus
exhibited in Figures 2 and 3 represent the unloading phase in the cyclic loading where no further
damage occurs.

Two sample analyses of complete fatigue simulations have been conducted to show the capabili-
ties of the developed model. The result of such an analysis for the damage evolution in the matrix,
in the fiber and the overall composite is shown in Figure 6. Failure of the entire composite occurs
due to fiber failure at about 116000 cycles for the case of 611mar = 1000 M Pa and a stress ratio
R = 0.1. In a second complete fatigue simulation failure occurs at about 217000 fatigue cycles
for 011,mez = 940 M Pa and a stress ratio R = 0.1. The obtained fatigue life in the two cases is
compared with experimental results for a uni-directional composite (Johnson 1989) as shown in
Figure 7. The results show satisfactory agreement which establishes the potential of the proposed

model.

Conclusions

A micro-mechanical damage model for fatigue loading based on thermo-dynamical principles is
proposed. The model is applied to uni-directionally reinforced MMC’s. Only elastic loading in the
form of a uni-axial fatigue loading (in the fiber direction) is considered hence reflecting high cycle
fatigue loading. Numerical results from the parametric study show the influence of various model
parameters on the damage evolution in the constituents. A sample analysis for a complete fatigue

simulation with final failure is shown.
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Table 1: Material properties used in the analysis

E(GPa)| v |o0,(MPa) ]| o,(MPa) | c(in %)
Matrix (Ti — 15 — 3) 924 0.35 933.6 689.5 67.5
Fiber (SCS — 6) 4000 |025]| N/A N/A 32.5
Table 2: Model parameters used in the analysis
V(MPa) | A\(MPa) | n £ ¢(MPa) | n | Figure
Matrix (T4 — 15 - 3) 0.1 80000 1.0 | refer to Eqgs. (51) - (57) 1.0 1.0 6
Fiber (SCS - 6) 3 160000 | 1.0 | refer to Egs. (51) - (57) 1.0 1.0 6
M N, €o §1 §2 Figure
Matrix (Ti — 15 - 3) 10 110000 | 0.55 0.02 0.03 6
Fiber (SCS - 6) N/A 110000 | 0.56 N/A 0.03 6
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Abstract—A micromechanical damage composite model is used here such that separate local evolution
damage relations are used for each of the matrix and fiber. In addition, this is coupled with interfacial
damage between the matrix and fiber exclusively. An overall response is linked to these damage re-
lations through a certain homogenization procedure. A finite element analysis is used for quantifying
each type of damage and predicting the failure loads of dog-bone shaped specimen and center-cracked
laminate metal matrix composite plates. The development of damage zones and the stress—strain re-
sponse are shown for two types of laminated layups, a (0/90)s layup and a (+45)s layup. © 1997 Else-
vier Science Ltd. All rights reserved.

INTRODUCTION

DAMAGE and plastic deformation is incorporated in the proposed model that is used for the
analysis of fiber-reinforced metal matrix composite materials. The proposed micromechanical
damage composite model used here is such that separate local constitutive damage relations are
used for each of the matrix and fiber. This is coupled with the interfacial damage between the
matrix and fiber exclusively. The damage relations are linked to the overall response through a
certain homogenization procedure. Three fourth-order, damage tensors M™, M and M? are
used here for the two constituents (matrix and fibers) of the composite system. The matrix
damage effect tensor M™ is assumed to reflect all types of damage that the matrix material
undergoes such as nucleation and coalescence of voids and microcracks. The fiber damage effect
tensor M' is considered to reflect all types of fiber damage such as fracture of fibers. An ad-
ditional tensor M¢ is incorporated in the overall formulation that represents interfacial damage
between the matrix and fiber. An overall damage effect tensor, M, is introduced, that accounts
for all these separate damage tensors M™, M and M°

THEORETICAL PRELIMINARIES

The metal matrix composite used in this work consists of an elasto-plastic ductile metal
matrix reinforced by elastic aligned continuous fibers. The composite system is restricted to
small deformations with infinitesimal strains. In the initial configuration, Co, the composite ma-
terial is assumed to be undeformed and undamaged. The initial matrix and fiber subconfigura-
tions are denoted by C7 and Ct, respectively. Due to applied loads, the composite material is
assumed to undergo elasto-plastic deformation and damage, and the resulting overall configur-
ation is denoted by C. The resulting matrix and fiber local subconfigurations are denoted by C™
and C, respectively. Damage is quantified using the concept proposed by Kachanov[1] whereby
two kinds of fictitious configurations C and C of the composite system are considered. C con-
figuration is obtained from C by removing all the damages, while C configuration is obtained
from C by removing only the interfacial damage between the matrix and fiber. € is termed full
effective configuration, while C the partial effective configuration.

A coupling formulation of plastic flow and damage propagation seems to be impossible,
due to the presence of the two different dissipative mechanisms that influence each other. For
example, the position of slip planes affects the orientation of nucleated microcracks. One can,
however, assume that the energy dissipated in the yielding and damaging processes is indepen-
dent of each other and apply a phenomenological model of interaction. Use will be made of the
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concept of effective stress[2]. Assuming a fictitious undamaged system, the dissipation energy
due to plastic flow in this undamaged system is assumed to be equal to the dissipation energy
due to plastic flow in the real damaged system.

The basic feature of the approach presented here is that local effects of damages are con-
sidered whereby these effects are described separately by the matrix, fiber and interfacial
damage. It is clear the local nature of damage of this approach whereby the different damages
are separately isolated. This approach can be summarized in the following three steps. First,
apply the local damage effect tensors M™ and M to the local effective configurations C™ and
CT, respectively. This is followed by applying the damage stress concentration factors B™ and B
to the local partial effective configurations C™ and C' in order to obtain the overall partial effec-
tive configuration C. Finally, one applies the interfacial damage effect tensor M to the overall
partial effective configuration C to obtain the overall damaged configuration C. _

In the formulation of this work, quantities based on the full effective configuration, C, and
the partial effective configuration, C, are denoted by a superposed bar and superposed tilde, re-
spectively. Fiber and matrix related quantities are denoted by a superscript m or f, appropri-
ately. In addition, interfacial damage related quantities are denoted by a superscript d.

In the undamaged effective configuration C, the overall effective stress increment d& can be
expressed in terms of the phase effective stress increments d&™ and d&' as follows:

dg; = & 4o + & da] _ 0))

where & and & are the matrix and fiber volume fractions, respectively. The local-overall re-
lations for the stress increments for the matrix and fibers in the fictitious local and overall con-
figurations are given as follows:

d5}; = By, d6u, wherer=m, f, ¥}

where B is the stress concentration tensor for the matrix or fibers. Similarly, the overall effective
strain increment is assumed in the effective configurations such that

dé; =& dey + & def, @)

where dé® and dé’ are the effective matrix and fiber strain increments, respcctivcly_. The additive
decomposition is assumed of the matrix and overall strain increments in C™ and C, respectively,
such that

dé; = d&;’ + dé,” )
4 = 48’ + e, )

where ’ indicates the elastic and ” indicates the plastic part of the increment. Equations (4) and
(5) are justified in view of the assumption of small strains. The fibers are assumed to deform
elastically and therefore we have

dél = ael’. (6)
The local-overall relations for the effective strain increments are given as follows:
de; = Z;k,eu. wherer =m, f, )

where A’ is the strain concentration tensor for the matrix or fibers.
The expressions for the stress and strain tensors based on the Mori-Tanaka method are
given in Appendix A.

CONSTITUTIVE EQUATIONS FOR THE UNDAMAGED METAL MATRIX COMPOSITE

The constitutive relations .for the matrix and fibers are given by the following relations:
d& = Df}, d& @®)
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ds| = Ef,, dé},, ®

where D® is the elasto-plastic stiffness tensor of the matrix and Ef is the elastic stiffness tensor
of the fiber. The elastic stiffnesses of the matrix and fiber are given by the following expressions

Egu = X288 + G™(Budy + 8udi) (10)
Ez-u = X880 + G'(6udp + 808a), ‘ an

where A%, Gp, A" and G’ are Lame’s constants for the matrix and fibers, respectively.
Substituting for d6™ and d&* from eqs (8) and (9), respectively, into eq. (1) and making use of
eg. (7), one obtains the relation

d6; = Djpg dépg. (12)
where '
Dypg = D%, AT, + PEL AL, ' (13)

D is the elasto-plastic stiffness of the composite in the effective undamaged configuration.

PLASTIC BEHAVIOR OF THE UNDAMAGED METAL MATRIX COMPOSITE

The elasto-plastic constitutive model for the matrix is based on the von Mises type yield
function f”’(aff, @) in the local configuration €™ such that

FoedEr-aye - @ - =0, (14)

65 is a material constant denoting the uniaxial yield stress of the matrix material and & is the
backstress tensor. The plastic flow in the configuration C™ is given by the associated flow rule
in the form

ki
4" = Ao, (1)

where A” is a scalar function introduced as a Lagrangian multiplier in the constrain thermodyn-
amic equations for the matrix material.

In order to describe kinematic hardening for the matrix, the Prager-Ziegler evolution law
[3] is used here in the configuration C™, as follows:

daj = ™G - &' ), (16)
where 42 is a scalar function given in terms of Ay as follows:
o o=
- 967 95®
i® = A%t "7 an
6=~ am)_a.f:
&l ki aaﬁ
and b is a material parameter.
The parameter A” is obtained from the consistency
df™(eP, &%) = 0 (18)
and is given by the following relation:
om 1 3]"
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where
o o
o 00 SRR
el
k!

The resulting elasto—plastic stiffness tensor for the matrix material in the effective undamaged
configuration is given by

R I P |
Dk = B = w55 B Flin oy @n

Damage effect tensors

_The effective stress concept[1,4] is used in this work. Considering the overall configurations
C, C and C, one can introduce an overall damage effect tensor M and a partial damage effect

tensor M for the whole composite system. These tensors are defined similarly to the definitions
of M™®, M’ and M* such that

C.IU = Mijklakl (22)

6 = M. (23)

The tensor M reflects all types of damage that the composite undergoes including the damage
due to the interaction between the matrix and fibers while the tensor M reflects damage of
matrix and fibers, excluding the interfacial damage. A matrix representation was explicitly de-
rived for this fourth order tensor by expressing the stresses in vector form. The tensor M was
shown to be symmetric. The symmetry property of the tensor M is used extensively in the deri-
vation that follows. The same holds true for the tensors M™, M’ and M®. Similar to tensor M®,
both tensors M™ and M’ could be represented in terms of second order tensors ¢™ and ¢, re-
spectively. The effective matrix stress and the corresponding fiber stress are defined as follows:

G; =M 5ok (24)
and :
0.',-; = M 2}‘[&{[: (25)

where 6@ and.& are the partial effective stresses in the C® and €' configurations, respectively.
These stresses are termed partial effective since the interfacial damage has not yet been incorpor-
ated into the.formulation. The overall damage effect tensor, M, can be related to the partial
damage effect tensor, M, and the local damage effect tensors such as

My = My M2, (26)
where
My, =M3 B2, +EM!, B .. @n

This expression defines the cumulative damage of the composite as a function of the local
matrix and fiber damages M™ and M, respectively, as well as the interfacial damage M°[5,6].

The expression of the fourth order local damage effect tensor M™, Mf and M* can be rep-
resented by a 6 x 6 matrix as a function of (6, ~ ¢})) in the form

MI'=[M@;-¢;)), r=m,f 4, (28)

where §;; is the Kronecker delta.
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In conjunction with the matrix form of M given by eq. (28), the local stress tensor ¢’ is rep-
resented by a vector given by

[ = [0}, 0%, 033, ], 0. 03)), r=m, L. (29)
The symmetrized & and o used here are given by[4]
= 1 Fo\— Py=
& = 5lou®y — ¢)) '+@u-¢))7'o}), wherer=m, f (30)
and
. 1 - -
&y = 5lou(ly = 65)™" + G~ ¢)'oy) @1

The stresses given by eqs (30) and (31) are frame-independent. Using the symmetrization pro-
cedure outlined by egs (30) and (31), the corresponding 6 x 6 matrix form of tensor M is given
by Voyiadjis and Kattan[7] as follows:

2wpw3 - 263, 0 0
0 2whw33 - 2¢§3 0
rM]'-‘-‘--l— : 0 0 2wnw22-2¢%2
2V | ¢i3dn + dwss Gudn+ w0,
0 d12¢13 + dnwn  ¢ndin + duwn
12023 + Praw2 0 612923 + P30
2013023 + 2012033 0 2¢12023 + 2013022
201323 + 2912033 2612013 + 292301 0
0 2012613 + 2¢wn) 2012023 + 2¢13022
wnw3s + w3 — ¢33 — ¢l ¢12023 + 13022 ¢12013 + P30

¢13¢23 + ¢120w33

w11w33+wnwzz—¢fg—¢fz : )
wnws + wnw — @3 — ¢,

1323 + Pjaw33

d12¢23 + P30
d12¢13 + dnwn

r=m,f, d (32)
and V is given by

V = wwnws = 0501 — ¢hon — ¢hwis = 2012621613 (33)

w,; is used to denote 8;— ¢, ¢; used in eqs (32) and (33) represents ¢, ¢5» or ¢3 with respect
to matrix damage, fiber damage or interfacial damage, accordingly.

Damage stress and strain concentration tensors

The matrix and fiber stress concentration factors are defined as fourth-rank tensors. As
composites undergo damage the stress and strain concentration factors do not remain constant.
The damage stress and strain concentration tensors are given by the following relations|[6}:

j‘;jkl = M;;,B'N”b.l,,k,, r=m,{ (34)
j;ﬂ" =M ;';zj;qr:b?nklv r=m, f. (35)

ANISOTROPIC DAMAGE ANALYSIS

The damage mechanism for each of the constituents of the composite material is different
from the other. The matrix undergoes ductile damage while the fiber undergoes brittle damage.
The mechanism of interfacial damage is dependent on the fiber direction. It is clear that one
single damage micro-mechanism cannot be considered for the three types of damages outlined
above. We therefore consider each damage evolution separately.
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Damage criterion

An anisotropic damage criterion is proposed in this work. In order to obtain a damage cri-
terion for nonproportional loading, the anisotropy of damage increase (hardening) must be con-
sidered. This is accomplished by expressing the damage criterion in terms of a tensorial
hardening parameter, . The damage criterion used here is of the form suggested by Mroz[8]
such that

g=g¥,h=0, r=mf,d (36)
where 3" is a generalized thermodynamic force conjugate to the damage tensor ¢" for each of

the damages associated with the matrix, fiber and debonding. Equation (36) is an isotropic func-
tion of tensors Y" and A" such that

¢ =puY Yy -1=0, @37
where
Py = b5 hid (38)
and pjj, is equivalent to Hill's tensor for yield surfaces. The hardening tensor K is given by
K, = 4) P8, 0) 2 + V. (39)
Tensors « and V* are here defined for orthotropic materials as follows:
- N\ .
- S\
v=| o0 s (3;) 0 0)
- Pan]
| ° o Hm(E)
and
i 00
vi=| 0 ipf o0 |, wherer=m,f d. (41)
-~ Lo 0 iy

These tensors & and V7 are generalizations to orthotropic materials of the scalar forms for iso-
tropic materials originally proposed by Stumvoll and Swoboda[9]. In expressions (40) and (41),
the scalar quantities A, A3, A%, Vi, v3, 3, &1, &3, &5, n}, n5 and n5 are material parameters
obtained by matching the theory with experimental results. The parameters an, AR, AR W, v
and v} are explicitly related to the physical properties of the material[6)].

In eq. (41), v}, v5 and v} define the initial threshold against damage for the orthotropic ma-
terial. It is obtained from the constraint that the onset of damage corresponds to the stress level
at which the virgin material starts exhibiting nonlinearity.

Referring to eq. (40), ¥’ is a scalar bardening parameter given by

K= rr 14}, wherer=m, f, d. @2)
Y

As outlined by Stumvoll and Swoboda [9], the damaging state is any state that satisfies g = 0.
Four states are outlined here

g <0 (elastic-unloading) (43)
£ =0, 25 d¥’'<0 (elastic-unloadi 44
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g=0 38—5;, dY ! =0 (neutral loading) (45)
U
g=0, 2 dY} >0 (loading from a damaging state). (46)

3y

In this section, the anisotropic damage criterion g is defined by eq. (37) as well as the loading
conditions outlined by eqs (43)(46). The anisotropic damage criterion is defined through the
second order tensors «” and V7, and the damage tensor ¢” for each constituent of the composite
material. In this work, we assume that the matrix and the fiber are isotropic materials while the
anisotropic damage criterion is used to describe the interfacial damage.

Damage evolution of the matrix .

The metal matrix exhibits two energy dissipative behaviors. Although the two dissipative
mechanisms of plasticity and damage influence each other, in this work, it is assumed that the
energy dissipated due to plasticity and that due to damage are independent of each other. The
power of dissipation for the matrix is given by

™ = ™ + 4™, Coe @7
where [ is the plastic dissipation and ™ the corresponding damage dissipation. The plastic
dissipation is given by

= mp - ”
N =67de . 48)

In this work, a small strain theory is assumed and the strain rate is assumed to be decomposed
into an elastic component €' and a plastic component € , such that

4E® = d& + d&. (49)
The associated damage dissipation is given by
= md
N =Y7dep, (50)

where Y™ is a generalized thermodynamic force conjugate to the damage tensor ¢™. The ficti-
tious undamaged material is characterized by the effective stress and effective strain. Since in the
full effective configuration, C™, the matrix has deformed with no additional damage, the dissipa-
tion energy in C™ is only composed of the plastic dissipation

n°=am (51
and therefore
™ =57 4", (52)

This is because plastic yielding is assumed to be independent of the damage process. The plastic
dissipation in the damaged matrix is equal to the corresponding plastic dissipation in the full
effective configuration, C*=. This concludes that

™ =™, (53)
which implies that
5 oF =67 o . (54)
Making use of eq. (54) together with
6 = Mg, (35)

one obtains a transformation equation for the plastic strain rates such that
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d&" = M5 dE . (56)

Making use of the calculus of functions of several variables, one introduces two Lagrange
multipliers AT and AT in order to form the function Q™ such that
Q" = 1" —~ AZf™ — ATE™. (7

In eq. (57), f7(6™, &™) is the plastic yield function of the matrix and &® is the backstress tensor.
g™ is the damage potential which is a function of Y™, To extremize the function Q%, one uses

the necessary conditions

=
and
an”

which give the corresponding plastic strain rate and damage rate evolution equations, respect-
ively:
af= .
m_——
P oD (€0)

dé‘? =A

and

9" 61)

Equation (61) gives the increment of damage from the damage potential g™. Using the consist-
ency condition for the matrix damage 4

dg= =0 (62)

one obtains the parameter AT. Equation (62) states that after an increment of damage, the
volume element again must be in a damaging state. From eq. (62), one obtains
ag”
—=_.dy®o
w_ 0¥
Tl i

B

oY P

(63)

Substituting éq. (63) into eq. (61), one obtains
dej = ﬁu dY‘;‘. (64)

where Y™ is a fourth order tensor defined as

3g™ 3g™

aYTary ]
Al <R T

4¢R YD

(65)

The generalized thermodynamic force Y™ is assumed to be a function of the elastic component
of the strain tensor €' and the damage tensor @™, or the stress & and ¢™

Y2 =Y2@ ¢7) or YT = Y ™5 ¢F). ©6)

The evolution equation for Y™ may be expressed as follows:
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aY Yye
(56) 4y =S5k o+ 274 agp. (67)
8k
Lagrange Substituting for d¥™ from eq. (67) into eq. (64), one obtains the evolution equation for ¢™ such
that
e 7 ay=\
255 tensor. dei = | L V'"a?’i;-f ddp (68)
. one uses
or
d¢ = X E, 52, (69
58
L ©8) where
Ly, = (5*5;/ + 8udy) - ﬁ"__ay',g‘ (70)
3¢k
- 9 The thermodynamic force associated with damage is obtained using the ‘enthalpy of the
damaged matrix where
@, respect- L
V@R, ¢")—5 DEROTE . (71)
(60) In eq. (71), E™ is the damaged elastic stiffness of the matrix. The thermodynamic force of the
' matrix is given by
® ye =22 72
o (72)
(61)

Using the energy equivalence principle [10], one obtains a relation between the damaged
] elastic compliance, E~®, for the matrix and its corresponding undamaged elastic compliance E
¢ copsist- such that[11]

@) EGn(@™) = M 3™ EnmM (@™ (73)
Making use of eqs (71) and (72), the thermodynamic force for the matrix is obtained explicitly
nage, the
such that
ME m -rn oM :&d
(021 abpq qulon; + UmM uwrs cd ) . (74)
5%
(63)
® (64) Damage evolution of the fiber
The gradual degradation of the elastic stiffness of the fiber is caused only through damage
and therefore no plastic dissipation occurs. We therefore have
=f =fd
A= =Yy{ d¢t (75)
5) jo¥y
) and
= f
m=0
s>mponent 0 (76)
Accordingly, the function Qf is given by
(66) Qf =1i - AT @)

[

and
EFM 5/4—B
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t_ 198 78
el = '3r. (78)

Using the consistency condition for the damage of the fiber
dgf =0 (79)

one obtains the evolution equation for ¢f
d¢f = X {50, (80)

where X! is a fourth order tensor similar to X™ expressed by eq. (69). ¥’ is obtained in a similar
approach to that of the matrix, Y™, and has a similar form, except replacing the superscript m
with f.
Interfacial damage evolution

The interfacial damage can be defined in terms of a second order symmetric tensor ¢¢ such

as[6]
¢5 = ¢S, 5). @1)

More elaborate interfacial damage expressions could be derived based on the work of Levy[12)].
The corresponding power of dissipation due to interfacial damage is given by

n'=v$de 82)
and
fi'=o. (83)
The function Q9 is expressed as
Q% = ¢ — A%¢ (84)
and
da = A 5"’% (85)
Using the consistency _cond'ition for the interfacial damage
dg®=0 (86)
one obtains the evolution expression for ¢¢ such that
 d¢l= XY, dow. @7

Similar to the procedure outlined for the other two types of damages Y¢ could be easily
obtained accordingly, such as

M,
¢

-
§ = 5CcaEgheM fsou + M 8, Eoly00) (88)

V

CONSTITUTIVE MODEL FOR THE DAMAGED MATERIAL

Derivation of the elasto-plastic constitutive model for the damaged composite system is per-
formed in three steps. The first step involves the derivation of separate constitutive equations
for the matrix and fiber in their respective damaged configurations C® and C'. This is followed
by the second step which combines the two constitutive equations into one for the overall com-
posite system in its partial effective configuration C. Finally, the interfacial damage is incorpor-

(36,

we®
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ated in order to obtain the final constitutive equation that includes all three types of damage in
the damaged configuration C. -

_ The local damaged elastic stiffness tensors E™ and E in the subconfigurations €™ and
C', respectively, are obtained using the hypothesis of complemental energy equivalence such
that

ER =M;RE2 M%) (89)

and

Ey=MIE ML (90)

In order to obtain the damaged elasto-plastic stiffness of the matrix constituent, one
needs to transform eq. (8) from the undamaged matrix configuration C™ to the
damaged matrix configuration C™®. This is performed through the material time differen-
tiation of eq. (24) together with strain rate counterpart obtained from eqs (49) and

(56), such that .
4 = dM ;D& + M ;5 a8, 1)

The time rate of the matrix damage tensor used in the material time differentiation of
¢q. (24) and its inverse used in eq. (91) may be expressed as shown below by making
use of eq. (69)

m M -
dM ikl = a¢m qur: doﬁ (92)
]
aM B i
aM i =gt x5, 453, ©3)
(2

Making use of eqs (24) and (91)«93), one obtains the resulting elasto-plastic stiffness re-
lation for the damage matrix constituent

Dy, = O;2D% M5, ©4)
where
iM% . aM-m -
m ikl v» m P i +M§’k’-Dm ﬂx&lz‘;;:b&s" (95)

"J""—_a-b;z; pamn” mn ijmn a¢;m

The overall response of the composite system in the partial effective configuration, C, is
given by

d6; = Dy déyy. (96)
The resulting equation for D is given by[6]
Dy = C=Df, A%, + C' D, AL . 97)

The overall damage response of the composite system is obtained from eq. (96) by
applying the interfacial damage effect tensor M®. Using the following relations

6y = dM fyou + M § doy (98)
and
dé;=dM jhe, + M o dew, 99)

we obtain the damage elasto-plastic constitutive relation including both the local
damages, ¢’ and ¢™, as well as the interfacial damage ¢°. Similarly, the rates of the
debonding damage effect tensor used in eq. (98) and its inverse used in eq. (99) are
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given as follows by making use of eq. (87)

aMs
dM Y, = a¢;”"x‘ doys (100)
and
aM e
M GE = wj"’x‘ do,,. (101)

Finally, one obtalns the damage elasto-plastic constitutive relation mcludmg both the
local damages, ¢' and ¢, as well as the interfacial damage ¢%. Making use of
egqs (96)(101) one obtains

doy = Dy den, (102)
where the damage elasto-plastic stiffness of the material is given by
Dju = opqumnM (103)
and
Oy = a:;"’" & O+ M &y b,,,.m“:é"qx o 7hs0as. (104)
The elastic stiffness for the damage composite E is given such that
Eju = anij""'NMqul' (105)
where the elastic stiffness in the partial effective configuration C is given as follows:
Ejo=PED A, +EEL AL, (106)

COORDINATE TRANSFORMATION

The three-dimensional damage elasto-plastic constitutive equation for single lamina refer-
ring to the principal material coordinate system has been introduced in eq. (102). The general
three-dimensional constitutive relation of a composite lamina referring to the off-axis coordinate
system denoted by prime *”’ can be obtained from eq. (102) by coordinate transformation.
Here, the x-y plane coincides with the x;-x; plane, and the angle between the x; and x axis is
6. The stress and strain vectors in those two coordinate systems are related by

{do} = [T){do}’

{de} = [T]{de})’, (107)
where [T] is 2 transformation matrix given by
cos 8 sin 62 0 —2cosfsind O 0
sin@ cos?6 0 2cosfsind 0 0
1.0 0 1 0 0 0
M= cosfsind ~—cosfsind 0 cos?6—sin%d 0 0 (108)
0 0 0 0 cosf siné
0 0 0 0 -siné cos#

Substituting eq. (107) into eq. (102), we obtain the relation
{(do}’ = [T)™'[D][T]{de}". (109)
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Thus, the damage elasto-plastic stiffness matrix referring to the off-axis coordinate x-y-z system
is

D)’ = [1)~'[DJ[T}. (110)

The constitutive equation for the plane stress problem is obtained from imposing the plane
stress conditions 6, = 6,, = 0,, = 0 to eq. (109). The explicit expression of constitutive
equation for plane stress is as follows:

*® *® *®
doxs [Dll Pa Dil( ae,,
doy, = D, D,, D dey, }. (111
daxy [ * * * Zd‘l'y ’
Dy, Dy, Dy

where

D;, =Dy’ ~ Dy’ x D3y’ /D3y’

D}, =Dy’ - Dy3' x Dy’ /D3y’

Dy =Dy’ = Dy’ x Dy;' /Dy’

Dy, =Dy’ = D1y’ x D¢’/ D3y’
Dy =Day' = Dyy’ x Dyy'/D3y’
Dy, = D' = Dy’ x D'/ D3y’
Dy, = D' = Dy’ x Dy’ [ Dy’
Dy, = D' = Dy’ x Dy’ /D3y’

Dy = D’ = Dy3’ x Dyy'[Dyy. 112)

GROSS DAMAGE ELASTO-PLASTIC STIFFNESS

The elasto-plastic damage stiffness tensor for a single lamina in its principal material coor-
dinate system has been presented in eq. (103). This stiffness tensor is transformed to the loading
coordinate system and expressed as [D], in matrix form. A symmetric stacking of plies is con-
sidered here such that 7 is the thickness of the laminate consisting of n plies and ¢, is the thick-
ness of the kth lamina. The average stress increment is expressed as follows (in vector form):

(do)yve = [}}:[D‘Lu]{de}. 13

k=]

Making use of eq. (113), one can define the gross damage elasto-plastic stiffness for the lami-
nated composite as follows in matrix form:

d=[1307%u]. 1o

kac)
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Making use of the assumption of constant strain through the laminate thickness, the stresses in
-each lamina are calculated as follows:

{do}y = [D"J{de). (115)

FINITE ELEMENT FORMULATION

The governing equation of the finite element method can be derived from the principle of
virtual work such as

J 00‘66[}' dV=J q,~5uidV+J ti8u; dA, (116)
v v A

where du; is a field of virtual diSplaccmcnts that is compatible with applied forces and ée¢; is the
corresponding field of compatible virtual strains given by

5 _1[6(5:«)_1_3(5“/‘)], 117

=3 dx;  ax;

and ¢; and 1; are body forces and surface tractions, respectively. For a small deformation analy-
sis, we have

where U; is the displacement of nodal points and Nj; is the displacement interpolation function
or the shape function.

Substituting eqs (117) and (119) into eq. (116), one obtains the equilibrium equations as fol-
lows: ‘

j ”ﬁ‘a‘&d;’=" QideV‘PJ 4N, dA. (120)
v = 9x; v y

One finally 'obtains the incremental equilibrium equations by differentiating both sides of
eq. (120)
K){dU} = (dP}, (121)

where {dU} is the unknown incremental displacement vector of the nodal points and {dP} is the
corresponding incremental nodal forces given by

dpP, = L dgiN dV + Idx,M‘, d4, (122)

where dg; is the incremental body force and d, is the incremental surface traction. In eq. (121),
[K] is the stiffness matrix which is given by
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| Ny Nk 4y 123
&b—JyajDWazd (123)

The incremental equilibrium eq. (121) expresses the equilibrium between the internal (orces {dF}
(on the left-hand-side) and the external force {dP} (on the right-hand-side). The residual force
vector {dR} is defined by

{dR} = {dP} - {dF}. (124)

In a damage elastic-plastic analysis, because of the nonlinear relationship between the stress
and strain, the equilibrium eq. (121) is a nonlinear equation of strains, and therefore, is a non-
linear function of the nodal displacement. Iterative methods are usually employed to solve
eq. (121) for displacements corresponding to a given set of external loads. Moreover, since a
damage elasto-plastic constitutive relation depends on deformation history, an incremental
analysis following an actual variation of external forces is used to trace the variation of displace-
ment, strain, stress and damage along with the external forces.

In an incremental analysis, the total load {P} acting on a structure is added in increments
step by step. At the (n + 1)th step, the load can be expressed as

mlp) =" (P} +™ {dP), (125)

where the left superscript » indicates the nth incremental step. Assumiifé that the solution at the
nth step, "{u}, "{6}, "{¢} and "{¢} is known, and at the (» + I)th step, one obtains the follow-
ing, corresponding to the load increment {dP},

P y) =" {u) + {du) (126)

"+l{g) =" {o) + {do} (1'27)

r+le) =" (€} + (de) (128)

) =" () +{d¢), r=m,f, d (129)
SOLUTION

A full Newton-Raphson method is used in this work to solve the system of nonlinear
equations that arise from the equilibrium equations. A brief description of the method is given by
Voyiadjis [13). The incremental analysis technique described in this chapter is successfully im-
plemented into the finite element program NDA (Nonlinear Damage Analysis) using the above
described iterative method. The steps involved in the process of solving are briefly described below.

(1) INCREMENT: Loop for each load increment

(1) Calculate the Joad or applied displacement increment for the current incremental step
or input the load/applied displacement increment.
(2) ITERATE: Loop for full Newton-Raphson iteration:

(1) Compute the residual load vector for this iteration subtracting the equilibrium
Joad from the load computed for the increment.

(2) Rotate the appropriate loads and applied displacements such that the degrees
of freedom at the skew boundary (a boundary condition that is not along the
global coordinate system) are normal and tangential to the skew boundary. .

(3) Assemble the stiffness matrices and find the equivalent loads for the applied
incremental displacements. Since explicit integration is difficult, Gaussian
points are used to evaluate the above integrals.

(4) Solve for the incremental displacements using a linear solver.
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Add the solved iterative incremental displacements to the applied incremental
displacements to obtain the complete iterative incremental displacements.
Rotate back the complete iterative incremental displacements at the skew
boundaries to the global coordinate system.

Cumulate the complete iterative incremental displacements to the total incre-
mental displacements.

Find the stresses due to the iterative incremental displacements. From the
iterative deformation gradient and the stresses updated, compute the updated
constitutive matrix D. From the total incremental displacements accumulated
so far and the D matrix, calculate the equilibrium load vector.

Check if the convergence of solution is met using a particular convergence cri-
terion. If convergence has not occurred, go back to the step ITERATE.

(10) If divergence occurs according to the convergence criterion, then reduce the

load increment appropriately as specified by the user and start the iterative
solution over again for that load increment.

(11) If divergence occurs for a load increment that has been reduced “m” times

(specified by the user), then report “convergence not met” and leave the sol-
ution phase.

(12) If convergence has occurred, then perform the following operations before

going for the next increment.

(1) Update the nodal positions by adding the currently obtained incre-
mental displacements.

(2) Transform the quantities pertaining to the material property to the
present configuration.

(3) Print out the appropriate quantities pertaining to the converged incre-
ment according to the user’s specifications.

(4) If the total load is not reached, go back to the step INCREMENT.

] ] I LALZAK K]

0
—==x 178

Thickness = 1.016
Dimension in mm

4111111

25

Fig. 1. Dog-bone shaped specimen and center-cracked laminate plate.
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Fig. 2. Finite element meshes.
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(1) Step 1. Retrieve o, o, ¢}. Retrieve also the information whether the previous loading
was a damage loading or not AIDAMG) and plastic loading or not IYILD).

(1) If IDAMG = 0 when retrieved, then evaluate the incremental elastic-predictor
stress of assuming that the loading is elastic. Use the undamaged elastic stiffness

matrix for the calculation (dof= Ejs dex).

(2) 1f IDAMG # 0 when retrieved, use (dof = Ey dex).
(3) Calculate the incremental elastic-predictor stress of matrix constituent doy;".
(4) Check if the predicted stress state of matrix constituent is inside the yield surface

or not.

Table 1. Material properties

Matrix (Ti-14Al-21Nb) Fiber (SiC)

Modulus 41 x 10 MPa
Poisson’s ratio 0.22
Initial volume fraction 0.3s
Yielding stress 65
Kinematic hardening parameter b

Table 2. Local damage parameters

Matrix damage Fiber damage Interfacial damage

'h 0.08 0.06 0.075
" 0.08 0.06 0.065
N 0.08 0.06 0.065
& 0.65 0.55 0.55
& 0.65 0.55 0.70
& 0.65 0.55 0.70
v 0.003 0.007 0.008
v 0.003 0.007 0.001

0.003 0.007 0.001

¢}
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Fig. 3. (a) Stress-strain curves of [+45]s layup. (b) Stress—strain curves of {0/90]s layup.

(5) If the stress state of matrix constituent is inside the yield surface then:

(1) Assign elastic stiffness to the constitutive stiffness and the predictor stress

increment to the actual computed stress increment.
(2) Set IYILD = 0 indicating the elastic loading has taken place.

(3) Exit to Step 2. Otherwise, go to the next step.
(4) Set IYILD = 1, then:

(1) Calculate the elasto-plastic stiffness D (when IDAMG = 1) or D

(when IDAMG = 0).
(2) Update the quantities o, o7, o7, af.
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Fig. 5. Strain contours for [0/90)s layup (in %).

(2) Step 2

(1) Check the damage criteria using the updated quantity oJ;.

(2) If damage criteria g’ < 0, then IDAMG = 0. Exit from the routines.

(3) If damage criteria g’ >0, then IDAMG = 1. Calculate the damage
increment d¢” and update damage quantity ¢".

(4) Store the updated quantities in a file.

APPLICATION TO THE DOG-BONE SHAPED SPECIMEN AND THE CENTER-
CRACKED LAMINATED PLATES

The finite element method is used for solving a dog-bone shaped specimen and a center-
cracked laminate plate shown in Fig. 1 that is subjected to inplane tension. Due to symmetry in
geometry and loading as shown in Fig. 1, one-quarter of the plate needs to be analyzed. Two-
dimensional plane stress analysis rather than three-dimensional analysis is used here since the
thickness of plate is much smaller than the other dimensions. Applying the appropriate bound-
ary conditions for the symmetry, both one-quarter of the center-cracked laminate plate and the
dog-bone shaped specimen are discretized using plane stress finite elements. The finite element
meshes chosen for analyzing the problems are shown in Fig. 2. The four-noded quadrilateral el-
ement is used in both finite element analyses.

Two types of laminate layups (145), and (0/90), each consisting of four plies are used here.
The thickness of each ply is equal to 0.254 mm. Since both layups are symmetric, no curvature
is assumed. Hence, the strain through the plate thickness is assumed to be the same. The ma-
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terial properties and damage parameters using the proposed constitutive model are listed in i Co
Tables 1 and 2, respectively. 3
The following convergence criterion is used in this analysis which is based on the incremen- "
tal internal energy for each iteration in that incremental loading([14]. It represents the amount of ‘f w.
work done by the out-of-balance loads on the displacement increments. Comparison is made the

with the initial internal energy increment to determine whether or not convergence has occurred. : terr
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Convergence is assumed to occur if for an energy tolerance ¢g, the following condition is met:
AUOCHR =" FO-D) < (AU R-"F)), (130)

where AU is the incremental displacement residual at the (f)th iteration, (" * 1R-" + 1E(=1y s
the out-of-balance force vector at (i — 1) iteration and (AU(" * 'R="F)) is the internal energy
term for the (i)th iteration in the (» + 1)th increment. Divergence is assumed to occur if the
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the crack tip for (+45)s layup (units are in MPa).
out-of-balance internal energy for the (i — 1)th iteration is greater than the out-of-balance in-

ternal energy for the ()th iteration. show
The load is incremented with uniform load increments of 5 MPa until the principal maxi- each
mum local damage value ¢ reaches 1.0 (¢p 2 1.0). The principal maximum local damage value , - ent@®
¢p is given by: each
- Figs
r + - stres
¢, =4 2"'22-4.‘/(“’?1 2"52) +6f r=mf,d (131) e
e : . obta:
Consequently, material failure at integration point is assumed when ¢p 2 1. The principal Ho®
damage value of the integration point in all elements is monitored at each load increment since to th
it is used to determine the onset of macro-crack initiation of the material. than
The dog-bone shaped specimen failed when the final load of 270 MPa was reached for the catec
(£45)s layup and 480 MPa for the (0/90)s layup. These failure loads are close to the experimen- there

tal failure loads 276 MPa for the (+45)s layup and 483 MPa for the (0/90)s layup[15]. The ma- Fig

terial failure for the center-cracked specimen occurs at the front of the crack tip when the final da.r’
load of 80 MPa is reached for the (+45)s layup plate and 120 MPa for the (0/90)s layup plate.

: load:

DISCUSSION OF THE RESULTS : dam.

The stress—strain curves from both the finite element analyses and experiments of the two spre:

types of layups of the dog-bone shaped specimens are shown in Fig. 3. Good correlation is P"‘g
shown between the finite element analysis results and the experimental data obtained by n

Voyiadjis and Venson[15). . and’
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Fig. 9. Comparison of damage elasto-plastic analysis with elastic analysis of stress o,, contours around
the crack tip for (0/90)s layup (units are in MPa).

Strain contours for the (+45)s layup and (0/90)s layup of the center cracked plates are
shown in Figs 4 and 5, respectively. Since the two types of layups are symmetric, the strains in
each laminae of the layup are the same. However, the stress and damage distributions are differ-
ent for each laminae of the layup since each laminae has a different stiffness. Stress contours for
each laminae are indicated in Fig. 6 for the (+45)s layup and Fig. 7 for the (0/90)s layup. In
Figs 8 and 9, comparison is made between the damage apalysis and the elastic analysis for the
stress o,, contours around the crack tip. The damage analysis shows considerable stress re-
duction due to the damage around the crack tip. The stress o,, at the front of the crack tip as
obtained from the elastic solution is higher than that of the material strength of the layup.
However, in the damage elasto-plastic analysis, the stresses are reduced such that they are close
to those of the material strength. The o,, stress reductions at the front of the crack tip are more
than 50% for [+45), 40% for [0] ply and 80% for [90] ply. Stress redistributions are clearly indi-
cated in Figs 8 and 9. Primarily due to the stress reduction around the crack tip, the stress is
therefore transferred to the outer portion away from the crack tip. This is clearly indicated in
Fig. 9 where the stress reduction at the 90° ply is primarily due to considerable interfacial
damage.

The local damage contours around the crack tip are shown in Figs 10-13, for the failure
loads in the case of [+45), [—45], [0], and [90] ply, respectively. For the [+45] layups, all types of
damage such as matrix, fiber and interfacial are developed. Fiber damage is considerably more
spread in the [0] ply than the interfacial damage. On the other hand, interfacial damage is more
pronounced with matrix damage for the [90] ply. However, fiber damage is much Jess developed
in the case of the [90] ply. This is in line with the experimental results obtained by Voyiadijis
and Venson[15).
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SUMMARY AND CONCLUSIONS ¥ o

The proposed constitutive model is implemented numerically using the finite element ! L
method. The model is used to analyze the dog-bone shaped specimens and the center-cracked r
laminated plates subjected to inplane tensile forces. Very good correlations are demonstrated i
between the numerical results obtained using the proposed theories and the experimental results 2

for uniaxial tension. The stress and damage contours in the case of the center cracked plate
show that stress redistributions and damage are qualitatively in line with the physics of defor- ;

mation. The analysis presented here allows the separate quantification of the different types of b ®
damages such as matrix, fiber or debonding.
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The authors are currently working on damage due to delamination which will be introduced
into the proposed model in future work. In order to capture delamination due to interlamina
stresses, a three-dimensional, finite element analysis will be performed.
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APPENDIX A

Mori-Tanaka’s sirain and stress concentration tensors

The expressions for the elastic stress and strain concentration factors given bere are based on the Mori-Tanaka method.

In the recent paper by Chen er al.[16], the expressions for the elastic strain concentration factors A” and the elastic stress

concentration factors B” are given by

A=A Fy r=mf (AD
E’w = ?UN.GNH' r=m, f- (Az)
where
Fou = 2202, + #AL, A3
Cpps = B2, + TBL . (A4)
The tensors A’ and 5 are termed the partial concentration factors for strain and stress, and are expressed in the follow-
ing form: .
Apgss = Upgts + Ppgrs (Bl = EZ)! (A9)
- 1
A;H = gy = 5(8’18,: + 8ubg) (A6)
Bl = Vo + Qpen(ESL - B2 (A7)
i:,u = g, (A8B)

where Ef and E™ are the elastic stiffiness tensors of the fiber and matrix, respectively. The tensors of B and { depend
only on the shape of the inclusion and the elastic moduli of the surrounding matrix. For example, for an inclusion in the
shape of a circular cylinder in isotropic matrix, the tensor P written in matrix form (6 x 6 array) is given by

wher.
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o 0 0 0 0 OW
0 a+de -a
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-a a+4e
_ 0 8a+e) 8ba+e) 0 0 °
P = 1 (A9)
0 0 0 % 0 0
a+2e
0 0 0 0 m 0
1
_0 0 0 0 0 %
where
£ ™
a=m+T ' (A‘O)
em—tou ‘ (A1)

2(1 — l“)"
where E® is Young’s modulus of the matrix, i® is the Poisson ratio of the matrix and G® is the shear modulus of the
matrix. The tensor Q in eq. (16) is given by

O = By - B2 PrnE2y. L (A12)

(Received 12 March 1996)
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symmetrization is necessary for a continuum theory to be valid in the classical sense.
In order to transform the current stress tensor 1o a symmetric effective stress tensor,
a fourth order damage effect tensor should be defined such that it follows the rules
of tensor algebra and maintains a physical description of damage. Moreover, an

explicit expression of the damage effect tensor is of particular importance in order
fo obtain the constitutive relation in the damaged material. The damage effect tensor
in this work is explicitly characterized in terms of a kinematic measure of damage
through a second-order damage tensor. In this work, tensorial forms are used for
the derivation of such a linear transformation tensor which is then converted to a

matrix form.

Introduction

In 1958. Kachanov (Kachanov, 1958) introduced the concept
of effective stress in damaged materials. This pioneering work
started the subject that is now known as continuum damage
mechanics. Research in this area has steadily grown and reached
a stage that warrants its use in today’s engineering applications.
Continuum damage mechanics is now widely used in different
areas including brittle (Krajcinovic, 1983; Krajcinovic and
Foneska, 1981) and ductile failure (Lemaitre, 1985, 1986). In
this theory, a continuous damage variable is defined and used
to represent degradation of the material which reflects various
types of damage at the microscale level like nucleation and
growth of voids, cavities, microcrack, and other microscopic
defects.

In continuum damage mechanics, the effective stress tensor
is usually not symmetric. This leads to a complicated theory of
damage mechanics involving micropolar media and the Cosserat
continuum. Therefore, to avoid such a theory, symmetrization
of the effective stress tensor is used to formulate a continuum
damage theory in the classical sense. Several methods used in
order to symmetrize the effective stress tensor are proposed by
Lee et al. (1986) and Sidoroff (1979). A linear transformation
tensor, defined as a fourth-order damage effect tensor, is pro-
posed by Sidoroff (1979); however, no explicit form of this
tensor is given. Moreover, damage tensor of higher order than
two may fail to convey the physical meaning of damage. In
addition, the works of Lee et al. (1986) and Sidoroff (1979) are
confined to two-dimensional problems. Furthermore, no explicit
expressions are derived for the fourth-order linear transforma-
tion tensors for the general anisotropic damage behavior of
three-dimensional problems.

In this work, continuum damage mechanics will be reviewed
based on the concept of effective stress. The effective stress
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is defined as the stress acting on a hypothetical undamaged
configuration that produces the same elastic strain or elastic
strain energy as the actual state of stress acting on the current
damaged configuration based on the equivalence hypothesis.
This equivalence statement is known as the hypothesis of elastic
strain equivalence or the hypothesis of elastic energy equiva-
lence. Using the definition of the effective stress and the hypoth-
esis of elastic energy equivalence, one can solve for variable in
the hypothetical undamaged configuration, such as the effective
strain. However, strain in the hypothetical undamaged configu-
ration is equal to that in the current damaged configuration
under the hypothesis of elastic strain equivalence. For a detailed
review of the principles of continuum damage mechanics as
used in this work, the reader is referred to the works of Kacha-
nov (1958), Lemaitre (1985, 1986), Krajcinovic (1985), Cha-
boche (1981, 1988a, b), Murakami (1988), Sidoroff (1979,
1980), and Voyiadjis and Kattan (1992).

In a general state of deformation and damage, the effective
stress tensor & is related to the stress tensor @ by the following
linear transformation:

;= Myou @)

where o is the Cauchy stress tensor and M is a fourth-order
linear transformation operator called the damage effect tensor.
Depending on the form used for M, it is very clear from Eq.
(1) that the effective stress tensor & is generally not symmetric.
Using a nonsymmetric effective stress tensor as given by Eq.
(1) to formulate a constitutive model will result in the introduc-
tion of the Cosserat and micropolar continua. However, the use
of such complicated mechanics can be easily avoided if the
proper fourth-order linear transformation tensor is formulated
in order to symmetrize the effective stress tensor. Such a linear
transformation tensor called the damage effect tensor is obtained
in the literature (Lee et al., 1986; Sidoroff, 1979) using symme-
trization methods. However, it lacks a systematic and consistent
approach. It is the aim of this work to provide a solid basis for
such transformation of the second-order stress tensor and its
justification for the symmetrization. Three different formula-
tions for symmetrization of the effective stress tensors proposed
by Lee et al. (1986) and Sidoroff (1979) are described below.
;I'he effective stress tensor is symmetrized using the following
aws:
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= (bu — ) V20u(by — )77 (2)
y = %{mék, - )+ (6 — ) low] (3)

o; = %[Uu(&, = &) + (6 — D)) 4)
Other forms for symmetrization are defined by many researchers
through the fourth-order damage effect tensor such as that by
Cordebois and Sidoroff (1982)

M:kjl = (6.'& - ¢ik)-”2(6jl - ,1)_”2' (5)
by Murakami and Ohno (1980)

M., = 4{6.;(51./ b))+ bi(sj = ¢L,)_l

(6,1 - ¢,J)-l6u + (6” - ¢l’)_16kj]5 (6)
by Betten (1983)

Mikjl = %[(6,; - ¢zj)-](éki - ¢kl)—l

+ (6l’—¢ll)*,(5l}_ d)L/)-l)]- (7)
and by Lu and Chow (1990)

My = 3{exp(d,/2) exp(du/2)

+ exp(d,/2) exp(di;/2)]. (8)

@& in the above equations is a damage tensor characterized by
a second-order symmetric tensor and is given by (Murakami.
1983)

3

2 #rAY (no sum in k) 9)

where i is an eigenvector comresponding to the eigenvalue.
¢., of the damage tensor. ¢. Voy:adjxs and Venson (1995)
quantified the physical values of the eigenvalues &, (k = 1. 2,
3) and the second-order damage tensor @ for the unidirectional
fibrous composite by measuring the crack density with the as-
sumption that one of the eigendirections of damage tensor coin-
cides with the fiber direction. This introduces a distinct kine-
matic measure of damage which is complimentary to the defor-
mation kinematic measure of strain. A thermodynamically
consistent evolution equation for damage tensor ¢ together with
a generalized thermodynamic force conjugate, Y, to the damage
tensor is presented in the paper by Voyiadjis and Park (1995).
Numerous fourth-order damage effect tensors are defined by
using the symmetrization laws indicated above. However, only
the one by Cordebois and Sidoroff (1982) may be obtained
from the symmetrization procedure given by Eq. (2). One can-
not deduce explicitly the fourth-order damage effect tensor M
from the remaining proposed procedures. In the case of Corde-
bois and Sidoroff (1982) it is impossible to get the explicit
form of the square root of the second-order tensor in Eq. (5).
Alternatively, the damage effect tensor using the fourth-order
damage tensor ¢ is defined by Chaboche (1979 ) as follows:

My = ay — )™’ (10)
where 1, is a fourth-order identity tensor and is given by
Iy = ‘;'(5.,6&1 + 6,6:)). (11)

However, it is not easy to characterize physically the fourth-
order damage tensor ¢, rather than the second-order damage
tensor ¢,. For the case of isotropic damage, the fourth-order
damage tensor is defined by Ju (1990) as follows:

Yy = dléikéjl + dylu (12)
where d, and d, are scalar (dependent or independent) damage
variables. Using the second-order anisotropic darage tensor ¢,
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in the damage effect tensors given by Egs. (5), (6), (7), and
(8) one may lose the physical view of the net stress tensor due
to the presence of the off diagonal elements of the damage
tensor ¢,;. In order to avoid this problem, the pnncxpaj damage
tensor rather than the second-order damage tensor is used in
conjunction the damage effect tensor. However, the eigendirec-
tions of the damage tensor do not coincide with the stress tensor
or eigendirection of the stress tensor. Since the damage tensor
¢ always has three orthogonal principal directions &' (k =

2, 3) and the three corresponding principal values bk =1, 2
3), Egs. (2), (3), and (4) can be expressed as follows in the
coordinates that coincide with the three orthogonal principal
directions of the damage tensor:

= (5 - &mp)-lﬂo‘.pq ¢nq)-l/2 (13)

é = %[ mr(6 - &m)- + (6nr - ¢m)_ 6m] (]4)
= 48 (b = Gm) + (b — u)Bm]  (15)

where ¢ is a principle damage tensor that is given by

;ﬁu‘:bubjld)u
8 0 0
={0 ¢ o (16)
0 0 ¢

and the second-order transformation tensor b is given by

ni ny n}
2 2 Q

b,] = ny n; nj3 . (17)
n} ni ni

This transformation tensor called the proper orthogonal tensor
requires that

bljblj= 6,k. (18)

The effective stress tensor in the principal damage direction
coordinates system is given by

Cpn = b,,.,»b,,jU,J. (19)

Similarly, the stress tensor in the prmcxpal damage direction
coordinates system is given by

6,,4 = pl'bq!akl- (20)

Using the principle damage direction coordinate system, Eq.
(1) is given by

B = .mmqépq (21)

The fourth-order damage effect tensors given by Egs. (5), (6),
(7), and (8) should be now expressed as follows:

Mmpnq = (6mp - &mﬁ)—”:(énq - énq)-]lz (22)
Mmpnq = 4[6'"!(5 $m)—l + 6M(6Pn - &’Im)-’
+ (B = Grun) by + (bng — Bmg) '6,0] (23)
Mgy = 31(Brn = bn) " (8pq = Bpg) !
+ (6mq - &mq)“l(épn - &pn)-l)] (24)
Mppng = 3[€XP(Gmr/2) exp(,,/2)
+ exp(dm,/2) exp(d,,/2)], (25)

respectively. These tensors are termed the principal damage
effect tensors.
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Fourth-Order Anisotropic Damage Effect Tensor

The explicit representation of the fourth-order damage effect
tensor M using the second-order damage tensor ¢ is of particu-
lar importance in the constitutive modeling of damage mechan-
ics. However, it is impossible to use the damage tensor ¢ rather
than the principal damage tensor ¢ directly in the formulation.
Therefore the damage effect tensor M in Eq. (1) should be
obtained from Eq. (21) using coordinate transformation.

Substituting Egs. (19) and (20) into Eq. (21), one obtains
the following relation:

aij = bmibnjbpkquMmpnan- (26)

Therefore the fourth-order tensor M in Eq. (1) is given as
follows: :

ana, a;a,;; apa; 2a;,a;; 2a,,a;3 2a,a,3
axay; QaaGxn apan 2a; a2 2a,a; 2a; a3
2a;3a;; 2a3,a33 2a;3,a3;

asa as.a a;a
[M] - 3431 32432 33433

auax ap8n Gpax; (apax; + a;pay) (@18 + ai3ax)  (anaxs + a;ay)
anas; Q03 Gnpay (G003 + anay) (G203 + G3a3) (62833 + anay,;)
anay apay a3axn (a8 + apay) (663 + apay)  (apas + a;ay)

M:kjl = bmibnjbpkbqlenpq- (27)

It is clear that the fourth-order damage effect tensors presented
by Egs. (5). (6), (7), and (8) differ from the damage effect
tensor obtained by Eq. (27). Therefore the fourth-order damage
effect tensor presented by the Egs. (5), (6), (7)., and (8) should
be expressed in the princpal damage direction coordinate system
using the principal damage tensor ¢.

One of the explicit expression for the fourth-order damage
effect tensors using the principal damage effect tensor given by
Eq. (22) is presented here. The principal damage effect tensor
given by Eq. (22) can be written as follows:

In order to obtain the matrix form of the damage eiicct wusun,
the stress tensors ¢, and 2 in Eq. (1) are converted into vector
form as follows:

{o} = {on 02 033012053043} (33)
{z} = ‘an 20130205 2,:) . (34)

Using the notation of Eqgs. (33) and (34), Eq. (1) is now
represented in matrix notation as follows:
{7} = [M]{o} (35)

where [M] is the 6 X 6 matrix representation of the fourth-
order tensor M. The explicit form of the matrix [M] is given
as follows:

(36)

It is clear that the various explicit representation forms of the
fourth-order damage effect tensors given by Egs. (5), (6), (7).
and (8) using the second damage tensor ¢ are violated by the
tensor transformation law.

Matrix Forms of the Damage Effect Tensors for Two-
Dimensional Problems

The explicit matrix forms of the damage effect tensors for
two-dimensional problems are presented in this section. For the
shake of simplicity, a plane state of damage, ¢; = 0 or ¢:; =
b2 = by, = @13 = ¢y = 0, is assumed for both plane stress

Mopry = Grpling (28)  and plane strain problems. Similar stress vector of Egs. (33)
where the second-order tensor & is given by and (34), for the two-dimensional problems are given by

(1 0 (8) = {60 62 60)7 (37)
Ve (&)= (&, Z.7222-712}T~ (38)

. 1
Ay = 0 — 0 . (29)  Using the notation of Egs. (37) and (38), one obtains Eq. (21)

vi-¢: represented in matrix notation as follows:
0 0 (8) = M1(6) (39)
vl - ¢z y

Substituting Eq. (28) into Eq. (27), one obtains the following
relation:

M:kjl = bmnbn]bpkbqﬁmpénq

where the 3 X 3 matrix, [M], termed principal damage effect
matrix is given by

) A':!nn A‘:’mz A?mz + A':!m,
M} =] Maa Maup Myuzn+ Mp | . (40)

= Gulji- (30) Muy Mpn Mpn + Mg,
Using Eq. (30), a second-order tensor a is defined as follows:
Ay = bmbpkémp- (31)

The matrix form of Eq. (31) is as follows:

[6]7[41(b]

-

[a]

bllbll bZlb2l b31b3l bllbIZ + b21b22 + bJIbJZ bllb13 b2lb23 + b3!b33

The principal damage effect matrices corresponding to Egs.
(22), (23), (24), and (25) are as follows, respectively,

— — - ” - ’ - -t - -
Vi—d, Vi-6¢, Vi-6 Vi-¢, Vi-¢ Vi-¢; V-, Vi-o, V1-o
blzbn + bzzbzn + b32b31 b12b12 + b22b22 + b32b32 b12b13 b22b23 b32b33

- - - - r - - - - + -
Vi-d V1-, Vi-6, V-9, Vi—-¢; Vi—-¢y V- Vi-; VI -
bllbll + b23b21 + bllbil b13b12 + b23b22 + b33b32 bnbla + b23b23 b33b33

(32)

V/l - &2

|- &

108 / Vol. 64, MARCH 1997

Vi -5 V1 - ¢,

Vvl — ¢,

\/l-&); \/l'é’l \/l—&z ‘/1‘&’3_
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where the transformation matrix, [T], and its inverse matrix,

[ 1
} 1-¢, 0 0 [T)" are given by
§ , 1
(M] = 1- o, 0 (41) cos?d sin?6 —2cos 8 sin 6
| 1 (T}=| sin% cos’  2cosfsin6 | (49)
0 - = cosfsinf —cosfsind cos’d — sin’f
i V(1 - é)(1 = ¢s) |
' [ 1 1/ 1 1 ]
—— “( — + ) 0
1 - ¢1 4\1 - ¢1 1~ d’:
M] = 1( LS ) -1 0 (42)
A\1-¢ 1-¢; 1- ¢,
1 1 1
0 0 - — 4 =
| | 4<1"¢1 l—¢;)_
: i 1 1 o ]
(-4 2(1 = é)(1 = ¢2)
. . 1 1
l M) = - - - 0 (43)
| 2(1 = &)1 = ¢2) (1-¢)°
0 0 = 1 -
. L 2(1 - ¢,)(1 — ¢2) J
l exp($,/2) exp(,/2) l(exp(®,/2) exp($,/2) + 1) 2 exp(d,/2)
| [M]= | J(exp(d./2) exp(d,/2) + 1) exp(¢2/2) exp(d:/2) 2 exp(/2) (44)
i exp($,/2) exp($2/2) 2
where the principal damage values, ¢, and ¢,. are given by cos’8 sin?é 2 cos 6 sin f
! - (7T} = sin?6 cos’f —2c0505in6] (50)
é, = .d%-d’—? + ‘/(ﬂ'—%—d)—) + ¢ (45) —cosfsinf cosfsinf cos’d — sin’f
! - where 6 is given by
' - _d>11+¢::__ &+ b0\ 2 0=ltan_’ (.._242_.) (51)
' ¢2- 2 J( 2 ) +¢12, (46) 2 ¢“ "¢22
respectively. Finally, the damage effect matrix can be obtained Substituting Eqs. (47) and (48) into Eq. (39), one obtains the

by coordinate transformation. The complete set of transforma-
tion equations for stresses in the principal damage direction

coordinate system is given by

{6} =I[THo}.

' Similarly, the effective stress vector in the principal damage

direction coordinate system is given by

following relation:

{7} = [T)7'(M]IT){o}

= [M]{o}. (52)
(47) " The damage effect matrix [M] is defined as follows:
(M] = [T)"'[MIIT]. (53)

Using the principal damage effect matrix given by Eq. (41),

\ (&} =1[T}{?) (48) the damage effect matrix [M] is given by
| )
c* st 2c%s? c*s? c3s? -2c¢3s? -2¢%  2cs? 2(c3s = cs)
=t — + - o — + — + = o = = o o
: 1=¢, 1=¢: V1-d)(1=¢) 1= 1-d: V1-)1-d) 1-¢ 1= V1-¢)1-4¢)
c¥s? c3s? -2c% st c* 2c%? —2cs®  2c% -2(c% - cs?)
M]= — + — + - - — <+ — + - - — + — + - - 54
] 1-¢, 1-¢: V1-d)(1-¢:) 1-¢ 1-¢ V1-¢)(1-¢2) 1= 1=¢ v(1-¢)(1~d) 4)
. -2c¢%  2cs? . 2(c% - cs?) —2cs’+ 2c3s -2(c% - cs?) 2c%s? . 2c%? . (c?=s2)?
1-¢, 1-d: Vl-d)(l-¢) 1-& 1-d Wl-¢)1-¢) 1-6 1-d: V(1-¢)(1~é)
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Conclusions

The fourth-order anisotropic damage effect tensor, M, using
the kinematic measure for damage, expressed through the sec-
ond-order damage tensor @, is reviewed here in reference to
the symmetrization of the effective stress tensor. This introduces
for a distinct kinematic measure of damage which is complimen-
tary to the deformation kinematic measure of strain. A thermo-
dynamically consistent evolution equation for the damage ten-
sor, ¢ together with a generalized thermodynamic force conju-
gate, Y, to the damage tensor is presented in the paper by
Voyiadjis and Park (1995). It is pointed out that the principal
damage tensor, ¢, should be used in the formulation of the
anisotropic damage effect tensor. Voyiadjis and Venson (1995)
quantified the physical values of the eigenvalues, ¢, (k = 1, 2,
3), and the second-order damage tensor, ¢, for the unidirec-
tional fibrous composite by measuring the crack density with
the assumption that one of the eigendirections of damage tensor
coincides with the fiber direction.

The fourth-order anisotropic damage effect tensor in the prin-
cipal damage direction coordinate system is termed the principal
damage effect tensor. By coordinate transformation, the fourth-
order anisotropic damage effect tensor is obtained. This fourth-
order anisotropic damage effect tensor has both physical sig-
nificance and explicit form. It is therefore not a mere implicit
mathematical expression to transform the current stress tensor
to a symmetric effective stress tensor. Moreover, an explicit
expression of the damage effect tensor is of particular impor-
tance in order to obtain the constitutive relation in the damaged
material.

In this work, tensorial forms are used for the derivation of
such a linear transformation tensor which is then converted to
a matrix form. The explicit matrix expressions of the damage
effect tensor are derived for both three-dimensional and two-
dimensional problems. Especially the damage effect matrix of
two-dimensional problems can be expressed by the damage
Variables. ¢“, 22 and d>12-
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Damage in MMCs Using the GMC

Part I: Theoretical Formulation
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1 Abstract

In this work the incorporation of damage in the material behavior is investi-
gated. Damage is incorporated in the generalized cells model (GMC) (Paley and
o Aboudi, [17]) and applied to metal matrix composites (MMCs). The local incre-
mental damage model of Voyiadjis and Park [26] is used here in order to account for
damage in each subcell separately. The resulting micromechanical analysis estab-
lishes elasto-plastic constitutive equations which govern the overall behavior of the
damaged composite. The elasto-plastic constitutive model is first derived in the
® undamaged configuration for each constituent of the metal matrix composite. The
plasticity model used here is based on the existence of a yield surface and flow rule.
The relations are then transformed for each constituent to the damaged configu-
ration by applying the local incremental constituent damage tensors. The overall
damaged quantities are then obtained by applying the local damage concentra-
® tion factors that are obtained by employing the rate of displacement and traction
continuity conditions at the interface between subcells and between neighboring
repeating cells in the generalized cells model. Examples are solved numerically in
order to explore the physical interpretation of the proposed theory for a unit cell
composite element.

2 Introduction

In the analysis of composite materials one can fallow a continuum approach or
) a micromechanical approach. In the continuum approach, the composite mate-
rial is treated as an orthotropic or transversely isotropic medium. The classical
equations of orthotropic elasticity are used in the analysis . This approach makes
no distinction between the two different phases of the matrix and the fibers. It
lacks accounting for the local effects especially due to the interaction between the
® different phases.
For the last two decades, researchers have been using micromechanical
methods in order to analyze the multiphase composite medium. Using the
micromechanical approach bas distinct advantages over the continuum approach




in the sense that the local effects can be accounted through the volume average
stress and the strain increments in each of the phases. This in turn, is linked
with the overall composite behavior. Different micromechanical models employ
different method of achieving the local-overall relations. Hill [18, 19] employed
the volume averages of stress and strain increments in the different phases and
introduced concentration tensors to relate these volume averages of the local fields
to the overall uniform increments. Dvorak and Bahei-El-Din [6, 7, 8] used Hill’s
technique to analyze the elasto-plastic behavior of the fiber reinforced composite.
They considered the matrix to be elasto-plastic while the fiber is elastic . In
the micromechanical analysis of elasto-plastic composites Dvorak and Bahei-E]-
Din [8] identified two distinct deformation modes, the matrix dominated and the
fiber dominated. The first mode is prevalent for the case of stiff elastic fibers
while the second mode is more treated as a general case of plastic deformation of
a heterogeneous medium.

Recently, Paley and Aboudi [17] developed the generalized cells model which
is capable of predicting the behavior of metal matrix periodic composites from the
given properties of its constituents. The generalized cell method is developed on
the basis of the method of cells model which was originally proposed by Aboudi [1].
Its applicability and reliability in the sense of composite properties such as elastic,
thermo-elastic, viscoelastic response of composites, and fatigue failure curves are
discussed by Aboudi [2].

Kachanov was the first pioneer who started the continuum damage mechan-
ics . Lemaitre [15], Chaboche (3] and Krajcinovic [5] used the continuum damage
mechanics to analyze different types of damage in materials ranging from brit-
tle fracture to ductile failure. Researchers have used continuum damage model
to analyze damage in composite materials by modeling the composite medium
as transversely isotropic. However, the proposed continuum approach by these
researchers made no distinction regarding the different phases in the analysis of
deformation and damage.

In the micromechanical approach, the local damage effects are characterized
separately in the sense that the damage tensors MT are introduced for each phase
of the composite system (Voyiadjis and Kattan [23]). For the two phase compos-
ite, a matrix damage tensor, M™, is assumed to reflect all type of damages that
the matrix material undergoes like nucleation and coalescence of voids and micro-
cracks, and a fiber damage tensor ,M7, which is considered to reflect all types of
fiber damages that fiber materials undergo such as, the fracture of fiber (Voyiadjis
and Park, [26]). In this research the interfacial damage effect is also expressed
through the fourth order damage tensorM?9. Finally the overall damage tensor M
is introduced that accounts of all those separate damages of the matrix, fiber, and
interfacial effects. However, in this work the interfacial damage effect is considered
as a component of the subcell itself. This can be either matrix or fiber or any other
material depending on which material occupies the corresponding subcell.




A thermomechanical constitutive theory was recently proposed by Allen and
Haris [4] to analyze the distributive damage in the elastic composite. In particular,
the problem of matrix cracking has been extensively studied in the literature (Dvo-
rak et al [10}; Dvorak and Laws [9]; Laws and Dvorak). Recently, Voyiadjis and
Guelzim [22] developed an incremental damage theory for metal matrix composites
based on the modified damage model outlined by Voyiadjis and Kattan [23], and
Voyiadjis and Park [26)].

In this work, the incremental damage model by Voyiadjis and Park [26] is
incorporated into the generalized cells model of Paley and Aboudi [17] in order to
analyze the damage behavior of metal matrix composites under monotonic loading
conditions. An attempt is made here in order to obtain damage parameters for
each subcell micromechanically based on the incremental damage model which is
developed within the frame of the effective stress concept as presented by Voyiad-
jis and Guelzim [22]. The subcells (local) damage parameters are then related to
the overall damage variables via the concentration tensors. These concentration
tensors are derived in the damaged configuration in terms of the undamaged con-
centration and the corresponding incremental damage tensors. A damage criterion
(Voyiadjis and Park, [26]) is used here for the damage evolution for each subcell.
The damage evolution mechanism for each subcell is considered separately, and the
extremum principle is used in order to formulate the damage evolution expression.
Finally damaged constitutive relations are formulated in order. Making use of the
micromechanical model (GMC) which allows one to divide the repeating volume
element into many subregions together with the incremental damage model, one is
able to analyze the damage at various locations and at any increment of loading.
This method provides a computationally efficient approach to predict the damage
by using the GMC for MMCs.

The incremental damage approach coupled with the micromechanical plas-
ticity model is formulated here in order to analyze the damage behavior of com-
posites in the plastic domain as well as in the elastic one. The fibers in this work
are aligned and have a linear elastic behavior while the matrix is considered to be
elasto-plastic material that obeys the von Mises yield criterion with an associated
flow rule and a Ziegler-Prager kinematic hardening rule. However, the resulting
yield condition for the damaged composite system is a combination of the gen-
eralized Ziegler Prager rule and the Phillips type rule. The motion of the yield
surface is described by a kinematic hardening rule that is a linear combination of
the Ziegler-Prager kinematic hardening rule, and the Phillip’s hardening rule in
the direction of loading. In the numerical simulation of this work, the unit cell case
of the GMC model is considered such that the repeating volume element consists
of an elastic fiber region together with three elasto-plastic matrix domains.




3 Theoretical Preliminaries

3.1 The Generalized Cells Model

The generalized cells model is the generalization of the method of cells (Aboudi, [1))
by taking any number of subcells rather than four subcells and considering the rate
dependent relations of the subcell for modeling the multiphase composite materials.
This generalization is particularly advantageous when dealing with elasto-plastic
composites, since yielding and plastic flow of the metallic phase may take place at
different locations. The GMC is able to provide a more accurate representation of
the actual microstructure.

This micromechanical analysis, based on the theory of the continuum media
in which equilibrium is ensured, can be summarized essentially as follows. A re-
peating volume element of periodic multiphase composite is first identified. This is
followed by defining the macroscopic average stresses and strains from the micro-
scopic ones. Continuity of traction and displacement rates on the average basis are
then imposed at the interfacesbetween the constituents. The micro equilibrium is
guaranteed by the assumption that the velocity vector is linearly expanded in terms
of the local coordinates of the subcell. This forms the relation between the mi-
croscopic strains, and the macroscopic strains through the relevant concentration
tensors. In the final step the overall elasto-plastic behavior of multiphase inelastic
composite is determined. This is expressed as a constitutive relation between the
average stress, strain, and plastic strain, in conjunction with the effective elastic
stiffness tensor of the composite. In this study the same steps are followed but
in addition the damage mechanics is incorporated by using the micromechanical
approach in order to obtain the damaged response of each constituent as well as
overall instantaneous damaged behavior of the elasto-plastic composite.

A unidirectional fibrous composite is considered here in the method of cells.
It is assumed that the composite has a periodic structure in which unidirectional
fibers are extended in the z; direction. This representative volume element is
shown in Figure (1a). The representative volume element (Figure (1b)) consists
of NgbyN, subcells such that the area of the cross section of each subcell is hgl,
with 8 = 1...Ng,v = 1...N, and each subcell has its own local coordinate system
(z1,22'9), 239) with its origin located at the center of each subcell.

Unlike the method of cells, in this work the instantaneous behavior of the
composite is considered. The displacement rate ;5" ( dot denotes time derivative)
is expanded linearly in terms of the distance from the center of the subcell (Paley
and Aboudi, [17]). This leads the following first order expression

48 = W) + 5,(6) g'i(ﬁ'r) + 5™ 11’:‘(61) 1)

where, 1;(%") is the rate tensor of the displacement components at the center of

the subcell, and é;(ﬂ7),z/}g(ﬁ7) are microvariables rates that characterize the linear

dependence of the displacement rates on the local coordinates 7,9, 3.
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The small strain rate tensor and the constitutive law for the material that
occupies the subcell ((37) are given by the following expressions respectively
som) _ 1(622,-(5") . au'j(ﬂ'r)) @
T2V oz, 01;

&}j(ﬁ) — ﬁgm)éfv) (3)
The instantaneous stiffness tensor, DY, depends on the deformation history,
loading path and applied loading rate. In this study for elasto-plastic materials,
the von Mises yield criterion with an associated flow rule and the Ziegler-Prager
kinematic hardening rule are used. This elasto-plastic tensor in the undamaged
material is given by the following relation

D = B8 — LOI pip pom 8707 @
okl = Sk G g e el o)

where Q is given by

az(ﬂ'r) 8fB"
5(57) 88?97 aam-y

i JT_(B — (B 6] P
(ai(j m - a.(j 7))5#3%

In equation (5), f® is the von Mises yield criterion with kinematic hardening
expressed in terms of the backstress tensor &#". The material parameter b7
pertains to the evolution behavior of the back stress (Voyiadjis and Kattan, [23]).
In the special case of perfectly elastic materials D®" is replaced by the standard
elastic stiffness tensor ") which characterizes the behavior of elastic materials
in the subcells. More elaborate plasticity models for the in-situ characterization of
metal matrix composites is given by the first author in other works(Voyiadjis and
Ganesh, [24]) . However, in this work a simple model is used.

The objective of the work outlined by Paley and Aboudi [1 7] is to solve the
microvariables given in equation (1). This equation is substituted into the small
strain tensor by employing the rate of displacement and traction continuity con-
ditions at the interfaces between the subcells and between neighboring repeating
cells in order to obtain the relation between the average subcell strain rate com-
ponents and the average overall strain rate components via strain concentration
tensors. The first step is to write a set of continuum equations in terms of the
microvariables. These interface conditions are shown in Figures 2 and 3. Since
it is ensured that at any instant the component of displacement rates should be
continuous at the interfaces, the following relations can be obtained in terms of

. FED _ 5y 8760 gF6M 60
8o a0 paPV Y

p(AM) (5)
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the micro variable rates using the continuity conditions of displacement rates at
the interfaces between the subcells and the neighboring cell and these relations are

given by P
. 1, . (B 1, .5
w‘(ﬁ’r) + _2_hﬂ9’(5‘7) = w'(ﬂ”!) _ Ehﬁggﬁ'r) (6)

and
1 .54
P + g BB = BN _ 5 Py (7)

All the field variables in equations (6) and (7) are evaluated at the centerline zi’
for the subcell (87) and z for the subcell (57) As indicated in Figure 2(b) since

the interface is along the z3 direction one has x ) for the subcell (B7) and :c(") for ®
the subcell (37) and the interface is along the z, direction. This relation can be
expressed by
2P =20 —hg2 or zP=2D 4 hs (8)
®
and
2 =z £,/2 or z{=z" 4 45/2 (9)
By employing a Taylor expansion of field variables in equation (6) together with
equation (8) and omitting second and higher order terms, one obtains L
X 1 0
w07 - 1 h(ﬁ) 0 5 _ om0 =y 4 L b 9 ;B _g#n) (1)
0z, 2 9z,
A similar expression can obtained by using equation (7) in equation (9) for the ®

interface conditions along z3 direction such that

o _ 1 0 .67 _ i(BnY — (6% 9 .69 _ .i(6%)
Wy 2()(61:2 d} ) w +2L’)(3.'Ez "/’i ) (11)

These equations are valid in the equivalent continuum medium in which the ®
repeating volume element can be defined by a point P. This mapping procedure
of repeating volume elements at P within the equivalent homogeneous medium
eliminates the discrete structure of the composite. Since a composite is subjected to
homogeneous boundary conditions, the behavior of all repeating cells are identical,
and a uniform field exits at the equivalent homogeneous medium. The governing o
constitutive laws of this equivalent continuum medium can be established by the
generalized cells model.
From equations (10) and (11) the Ng+ N, continuum relations can be written

in terms of the microvariables 0(6") and z/z(ﬁ ’), and their explicit expression can be

6
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found in reference [17]. The composite standard average strain rate & i given

by

NBf N«

ﬁ—l =1

It is possible to derive a 2(Ng + N,) + Ng N, + 1 system of continuum relations
expressed in terms of the subcell strain rate tensors e(ﬁ'7 by using the previous Ng+
N, continuum equations together with expression (123 After tedious mathematical
manipulations, these relation can be given as follow

én = 3(1?7) B,y=1:---,Ng,N, (NgN, relations) (13)
1
€2 = 7 Z hsel?) y=1.--,N, (N, relations) (14)
€33 = % Z ¢8) B=1---,Ns (Ng relations) (15)
NB Ny
263 = — Z Z hs 4623 A (one relation) (16)
ﬁ—l =1
263 = 7 Zz;g‘;” B=1.---,Ng (Nsg relations) (17)
1 NS
26, = 7 Zh éﬁ” y=1.-+,N, (N, relations) (18)

The above 2(Ng + N,) + Ng N, + 1 continuum relations are expressed in matrix
form by Paley and Aboudi [17] as follows

Agé, = Jé (19)
where the 6-order average strain-rate vector is of the form
[€] = [€11, €22, €3, €23, €13, &12) (20)
‘and the 6Ng N, order subcells strain-rate vector is defined as follows

[ = (£, &9, &% ... ¢ (21)




The Ag is 2(Ng + N,)+ NgN, + 1 by 6NgN, matrix and involves the geometrical
properties of the repeating cells while J is a 2(Ng + N,) + N3N, + 1 by 6 matrix .

Orne now needs 5NgN,, — 2(Ng + N,) — 1 continuum relations to complete
the 6 NN, set of continuum equations. They can be obtained by imposing the
continuity of the rates of traction at the interfaces between the subcells and between
neighboring repeating cells. The continuity of average stress rates at the interfaces
can be expressed by the foliowing relations

85 =8",j=1,2,3 (22)
and
& =6{7,5=1,2,3 (23)

One can express the average stress rate 52?”) in the subcells in terms of the average

strain rate Eff " by using the constitutive law of the material (equation (3)) in the
subcells. Using equation (22) and (23) the remaining continuum equations which
can be written in the matrix form as follow

Amé, =0 (24)

Ar is 5NgN,- 2(Ng + N,) — 1 by 6NgN,, matrix. A,, involves the instantaneous
properties of the material in the various subcells. The 6Nz N, continuum equation
can be written in the following matrix form by combining equations (19) and (24)

A€, = Ke (25)
where the 6Ng NV, order square matrix Ay is given in the form _
s __ Am — 0
A= [AG and K =|, (26)

One can now solve the linear system of equations (25) in order to obtain the
following expression

€, = At (27)
where
A.=[A]7'K (28)

A_ is the instantaneous strain concentration tensor that relates the average strain-
rate tensor in the subcell to the average overall strain-rate tensor. The matrix A,
can be partitioned into a number of Ng N,, by 6x6 matrices as shown below

Agll)

AN N)



A7 is the instantaneous strain concentration tensor for the subcell which relates
the average strain rate tensor in the subcell (3+) to the average total strain rate
tensor. One can now obtain the overall effective instantaneous stiffness tensor of
the composite by using the strain concentration tensor of the subcell along with
its respective subcell constitutive equations (Paley and Aboudi, 1992).

3.2 Incremental Damage Model

In this study, the incremental damage model is used in order to characterize the
damage using the fourth order incremental damage tensor m?) where () desig-
nates the subcell . The concept of effective stress as generalized by Murakami [16]
is used here in order to introduce the damage for the (Ngby N,) constituents of
the composite system. The m(#") is assumed to reflect all types of damages that
corresponding subcells undergo such as nucleation and coalescence of voids, and
microcracks. This local damage response is linked to the overall damage response
of the composite medium through the stress and strain concentration tensors. The
elasto-plastic stiffness tensor is derived for the damaged composite using the sub-
cell incremental damage tensors in the generalized cells model, and the relation
between the subcell incremental damage tensor m(#?) and the incremental overall
damage tensor m.

Kachanov [12] introduced a simple scalar damage model for isotropic mate-
rials by using the concept of the effective stress. The incremental damage model
was further developed subsequently on the base of the effective stress concept for
anisotropic materials by Voyiadjis and Park [26] and Voyiadjis and Guelzim [22]
In its formulation three configurations are assumed namely the initial undeformed
and undamaged configuration Cp , the deformed and damaged configuration C,
and the state of the body after it has only deformed without damage C, (Voyiadjis
and Kattan [23] ) as indicated in Figure 4.

By considering the equality of forces between the damaged, C, and the un-
damaged fictitious configuration ,C, the following linear transformation can be
written between the Cauchy stress in the configuration C, and the effective Cauchy
stress in the configuration C

GA=0A or 5=(1-¢)! (30)
where
A-A
¢ = — (31)

and ¢ is a scalar (Kachanov [12]). In the above equations A and A are the
areas of the crossections of the axially loaded bar in the C, and C configurations
respectively. The term ¢ is a measure of damage. The concept of effective stress




as generalized by Murakami [16] is given through the generalization of equation
(30) such that

6 = M:o (32)

where M is a fourth-order damage effect tensor and is a function of the second
order symmetric tensor ¢. The effective Cauchy stress tensor & need not be
symmetric or frame invariant. However, the symmetrized effective Cauchy stress
tensor & used here is given by (Lee et al. [13])

Oy = ';‘[Uik(akj - i)+ (6 — du) "l ouj) (33)

¢ is a second rank tensorial generalization of the scalar function ¢ given by equa-
tion (30). The stress given by equation (32) is frame independent. Utilizing the
symmetrization procedure outlined by equation (33), a 6 by 6 matrix form of tensor
M is derived by Voyiadjis and Kattan [23]. However, the fourth order tensorial
form of M is utilized in this work.

In order to find the incremental damage tensor m, one can use equation (32).
The rate (incremental) expression of this equation can be written as follows

§=M:6+M:0o (34)
The superposed dot implies the material time differentiation. In order for equation

(34) to be homogeneous in time of order one (i.e stress-rate independent) M should
be a linear function of &. This is demonstrated by the following expression

¢=X:6 (35)
Since M is a function of ¢, one obtains therefore
o OMn .
Mukl - a¢pq 'Pg (36)

Consequently by substituting equations (35) and (36) into equation (34), the fol-
lowing relation may be written in the form

6 = m:6 (37)

where m represent the fourth order incremental damage tensor and is given by
Voyiadjis and Guelzim [22]

Mijkt = Mijk1 + GijpgriOpg (38)
where
OMi;n
G:'J’pqra = #xmﬂ (39)
pg

The explicit expression for the fourth order tensor X in equation (39) is given in
Section 4.4. The proposed damage model was used successfully for both monotonic
and cyclic loads Vojiadjis and Ganesh [25]

10




4 Theoretical Formulation

4.1 Basic Assumptions

In this work, Cy denotes the initial undeformed and undamaged configuration of a
single laminate while Co"3'7) is the initial undeformed and undamaged subcell sub-
configuration of a single laminate. The composite material is assumed to undergo
elasto-plastic deformation and damage due to the applied loads. The resulting
overall configuration for a single laminate is denoted by C. Damage is expressed
by generalizing the concept proposed by Kachanov [12]. The fictitious configu-
rations C#") is obtained from C®) by removing the different types of damages
that the corresponding subcell (87) bas undergone due to the applied stresses.
The total or incremental subcell stress at configuration C®?) is converted to the
respective total or incremental stress at the fictitious configuration C(#") through
the damage tensor M#") or m#7) respectively. The incremental damage tensor
m(") reflects the damage related that subcell only. Following this local damage
description, local-overall relations are used to transfer the local damage effect to
the whole composite system in configuration C. This is accomplished through the
stress and strain concentration tensors of the subcells.

The coupled formulation of plastic low and damage propagation is quite
complex due to the presence of the two different dissipative mechanisms that in-
fluence each other. This could be indicated by the fact that the position of the slip
planes affect the orientation of nucleated microcracks. A phenemological model
of interaction can then be applied. In this work use is made of the concept of
the effective stress (Lemaitre) [14]. Making use of a fictitious undamaged system,
the dissipation energy due to plastic flow in this undamaged system is assumed
to be equal to the dissipation energy due to plastic flow in the damaged system.
The damages at the single laminate level are described separately by the damage
in the subcells according to the material in the subcells. The subcell incremental
damage tensors, m(7), is better suited for use in the formulation of the constitu-
tive equation of the damaged material behavior due to the incremental nature of
plasticity.

In this work, direct tensor notation is employed whenever possible. The ten-
sors are denoted by the bold face letters. The following notation wherever possible
for tensor operation is followed throughout the paper for the second-rank tensors
U and V and the for the fourtb-rank tensors C and D. The following notation is
used in thiswork U : V = U,'jV;j, Uv = U,-,%,, C:U= CijuUn, U.C = U,'jC,'jkz
and C : D = CijmnDmnni. I2 and I are respectively the second-rank and fourth-
rank identity tensors: I3 = 6;; and I4 = (dudji + 8udjx) where §;; is known as
the Kronecker delta. The transpose and inverse of tensors are denoted by the
superscript ”T” and ”-1” respectively.
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4.2 Local-Overall Relations of The Damage Tensors

In this section the relations between incremental damage tensor m#" of subcells
(Bv) and overall incremental damage tensor m of the composite medium are de-
rived by using the fact that the average damaged stress rates & can be obtained
as the average sum of the the damaged stress rates &%) of the subcells in the
damaged configuration C#") and is given by the following relation

Ng N,

b=53"3 vp,6 (40)

B=1 7=1

In equation (40) V is the total area of the representative volume element while
Vg, is the area of the individual subcell in the damaged configuration. Subcell
incremental damage tensor m? can be introduced in a similar form to equation
(37) such that

&5 = m® . 67 (41)

where m(#") encompasses all the pertinent damages that the corresponding subcell

undergoes. The effective subcell Cauchy stress rate & is related to the overall
effective stress rate & in the composite through the stress concentration tensor

B¥ as follows

FACAU - 1o/ IS (42)

where the effective stress concentration tensor B is given in the following ex-
pression by Paley and Aboudi [17]

B® = B . 367, [C)! (43)

where C®" is the effective stiffness tensor for the subcell, A®) is the undamaged
strain concentration tensor for the subcell and the C is the overall undamaged
effective stiffness tensor for the composite. One can solve ¢*" from equation (41)
such that

68N = [m#M)-1 . 567 (44)

Making use of relations (42) and (44) in (40), one obtains the following expression

N5 N,
1 -1 = .
s By a6, 2
6= E E ve, [mP) B . 5 (45)

=1 =1

This equation can be easily written in a similar form to equation (37) where m
represents the overall incremental damage tensor which reflects all types of damages
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that the composite undergoes including that due to the interaction between the
subcells. The resulting expression is given by

NB NA,

m= [% Ezvm[m(m]-l : B(ﬁ‘r)] - (46)

f=1 r=1

This expression defines the cumulative incremental damage of the composite as
a function of its subcell components.However, m may be expressed in terms of
the fiber damage m/, the matrix damage m™, and the damage due to debonding
m¢?(Voyiadjis and Park, [26)).

4.3 Damaged Strain and Stress Concentration Tensors

Concentration tensors do not remain constant as the composite undergoes
damage. However, they are constant in the undamaged elastic domain. In this
work undamaged concentration factors are modified for the incremental damage
model in conjunction with the hypothesis of the equivalence of elastic strain en-
ergy [20]. The effective elastic strain and stress concentration tensors are obtained
by using the generalized cells model. The subcell strain rate tensors can be related
to the overall strain rate tensor in the following way

é—(ﬁ'r) = A(ﬂv) & (47)

where fourth order tensor, AP is the instantaneous strain concentration tensor for
the subcell (87) and is given by equation (29). The undamaged stress concentration

tensors B of the subcells are already defined in the previous section and their
relations are given by equations (42) and (43).

The damaged concentration tensors can be obtained in terms of the un-
damaged concentration factors and incremental damage tensors in connection with
the elastic energy equivalence, given by

dU8") = duém (48)
or

%dé“’” . dg®" = %d&"’"’ : delBn (49)

Substituting equation (41) into equation (49), one obtains the following relation

£ _ [m(ﬁ:v)]‘l . ¢BY (50)
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The above equation can be written for the overall behavior in similar form as shown
below

E=[m]':¢ (51)

Consequently by combining equations (50) and (51) with equation (47), the relation
between the damaged strain rate é#) of the subcell and the damaged strain rate
€ can be obtained in the form shown below

e = AN . ¢ (52)

where A" is the damaged stress concentration tensor for subcell (87) and its
expression is given by

ABY) = B . 3B, im)™ (53)

Similarly by using equations (37) and (41) with (42), the damaged stress concen-
tration tensor for the subcell can be given as follows

&8 =BEY . & (54)

where B®") is the damaged stress concentration tensor for subcell (87) and its
expression is given by

B# = [mn]1 . B . (55)

4.4 Damage Criterion

In order to study the evolution of damage in composite materials, one first needs
to investigate the damage criterion. The anisotropic damage criterion used here is
expressed in term of a tensorial parameter h (Voyiadjis and Park, [26]). It is clear
that the damage mechanism for each subcell of the composite materials should
be accounted separately since each subcell can be occupied by a different type of
material in addition their boundary and geometric conditions can be different for
each subcell. Therefore one single damage mechanism cannot be considered for all
subcells in the multiphase composite medium. The anisotropic damage criterion
based on the Mroz theory [27] is generalized by Voyiadjis and Park [26] as follows

g(ﬂv) = g(ﬂ‘r) (Y, ,g) =0 (56)
or

g8 = l/i_(ia7) P_g_ﬂk'lr)yk(f‘v) -1=0 (57)
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where

Rgi'{) = h;}(ﬁ‘!)h;l(ﬂ’r) (58)
Y ¥ is the generalized thermodynamic force conjugate to the damage tensor
@®). The hardening tensor h(%? is expressed as follows

KEY = U + VP (59)

where tensors U®" and V" are defined for orthotropic materials in terms
of the generalized Lame constant PYRUPY'e 7),Agﬁ") and the material parameters
yl(ﬂ'f),yz(ﬂ'ﬂ,ya(ﬁ"f), £1(ﬁ7),62(ﬁ7),£3(67 ,and nl(ﬁ"),m(ﬂ'ﬁ,m(ﬁ) Whic.h are Obta_ined

by matching the theory with the experimental results. Voyiadjis and Park [26]
used the following expressions for U,-g'-s " and V,.gp").

()0 o \*
U= 0 dm(f)e O (60)
0 0 Aams(%)®
and
A11/12 0 0 (67)
‘/"-(75‘7) = 0 Ag V22 0 (61)
0 0 /\31/32

k67 is the scalar representing the total damage energy and is given by the following
relation

- / ty(ﬁ'r) . ¢ dt (62)
0
or
K67 =y . é(ﬁ") (63)
The generalized Lame constants are defined as follow (Voyiadjis and Park, [26]).
A = EFP (1 - ¢ o1 (64)
E,-(ﬂ") are the magnitudes of the effective moduli of elasticity along the principle

axes defined along the direction of the fiber and transversely to them. In order
to check the damaging state of the material, the following four steps are outlined
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below by (Stumvoll and Swoboda [21])

g% <o, (elastic unloading) (65)
G NN ,
¢ =, %;m .Y <0, (elastic unloading) (66)
&) g . (87 .
g# =0, Sy @ :Y" " =0, (neutralloading) (67)
én .
g =0 697 b >0, (loading from a damaging state)  (68)

oYy #) *

The case corresponding to loading or unloading from an elastic state is given by
relation (65). For elastic unloading it is represented by relation (66). In the case
of neutral loading it is represented by relation (67). Finally for the loading case it
is given by relation (68) from a damaging state. It is clear from the above outlined
steps that, the damage criterion (g = 0) should be satisfied for the state of
damage to occur. As mentioned before for the damage evolution of materials , dif-
ferent types of micro-mechanics damage are considered for each subcell depending
on the material properties within the subcell. In this work, for an elasto-plastic
matrix, the subcell is assumed to undergo ductile damage while the elastic fiber in
the subcell undergoes brittle damage and their total energy dissipation is different
from each other. For the elasto-plastic matrix, two energy dissipative mechanisms
of damage and plasticity are exhibited. Although the two energy dissipative be-
haviors are not independent from each other, in this work it is assumed that energy
dissipative due to plasticity and energy dissipative due to damage are not coupled
with each other. The power of dissipation of the matrix material can be written
in the following form

67 = 16nd 4 11(61p (69)

where T1(6)¢ is the damage dissipation and IT(#")? is the plastic dissipation. It is
assumed that plastic yielding is independent of the damage process, and therefore
the later term can be replaced by its undamaged configuration and it can be
expressed as follows

i = 567 . é-(ﬁ") + 5(37) - &b (70)

£(87) . . . . . . .
where the term B : &7 is associated with kinematic hardening. The associ-
ated damage dissipation is given by

e = y ) . g7 | g (61 (67) (71)
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The term K® k8" is associated with isotropic damage hardening. The first
author has also introduced [22] a coupled incremental damage and plasticity theory
for metal matrix composites. One can use the calculus of the function of several

variables in order to introduce two Lagrange multipliers Agﬂ” ) and /\gﬂ") to form
the function 27 in the following form

Q" = 8 — Agﬁﬁ) F6M — Agﬁ'r) Pilel (72)

In this equation, f#) (&, &) is the plastic yield function of the elasto-plastic matrix
and &7 is the back stress tensor. The term g{#? is the damage potential which
is a function of the thermo-dynamic force tensor Y(#") and the damage hardening
parameter £7), One can extremize the function Q7 to solve for the Lagrange
multipliers AY Mand APY. These necessary conditions are given in the following
form respectively
o067 F;l91Ced]

Making use of equations (70), (71) in equation (69) and using the calculus of
functions, one can use the extremum relations in equations (73) to obtain the
following expressions '

«om) 1o OFPY

€ - Al W = 0 (74)
and

LB (e 090

¢ ~Ag = 0 (75)

The Lagrange multiplier A'lw") in equation (74) can be obtained by using the con-
sistency condition for the yield function for the elasto-plastic matrix in conjunction
with the Ziegler-Prager kinematic hardening rule. The corresponding yield func-
tion is given by

FON = g(‘_’ —&)B; (5 - &)f7 — 5,2 (76)

where a(#?) is given by

&P = ;67 (& - &)(ﬁ'r) (77)

and ji®" is defined such that

ﬁ(ﬁ’i) = 3b(ﬁ7)A(15‘7) (78)
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In equation (78) 4" is the kinematic hardening parameter for the elasto-plastic
subcells. The consistency condition of the yield function in equation (76) can be
written in the following form

=0 (79)
or
JF(M -(ﬂ)+ f() L& =0 (80)
350 3G

This condition assures that in a plastic loading process the subsequent stress and
deformation state remains on the subsequent yield surface. One can use this con-
sistency condition together with the equations (77) and (78) in order to obtain

A% in the following form

6y _ _1 88 « (am)
A ~ H® 5567 35 (81)

where the scalar quantity H is given by
H® = gpbn 2L of#r

PRCOR (0.(67) - al®) (82)

Equation (75) gives the incremental relation of the damage variable for each subcell.
Similarly using the conmsistency condition of the damage potential g{#"), one can

obtain the parameter Ag(ﬁ7). The corresponding damage consistency relation can
be given as follows
¢ =0 (83)

where g(#7) can be defined as a function of g7 = gl")(Y", k) or ¥ = g (0, @, k).
Equation (83) can be written as follows

ag(ﬁ'r) .6y O (87)
s 4 99 . 4P L 09 Liem
o\ + 1@+ EP FIDL

=0 (84)

By substituting equation (63) and (75) into (84), the above equation can be ex-
pressed in terms of the parameter A" " where

(8 B (By
dg ) :&(57)+A2(’9”’) ag( 7) : ag(ﬁ‘r) . dg )
6o 67) 3¢(67) oY 8 ok

y®n . P = g (85)

One can solve for the parameter A'z(m from equation (85) such that

82(57) . . (ﬂ—y)
A2(ﬁ7) B saa : (86)
:é( '17) aYE( ‘7‘)7 + Kg(ﬁz)y(p.,) ayg( 673’
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Using relation (86) with (75) , the incremental damage evolution equation for the
subcell (37) can be obtained in the following form

47,(57) = X7 . &7 (87)

where X ¥ is the fourth order tensor such that

ag(ﬁ-r) og(av)
X0 = 2 58)Y 78(?)7 B (88)
8g'81) | 8gBr 8q(Bv By) . 8¢'P7
;éaw-a—}"‘mW'f‘sﬁ'msY( ) K

The thermodynamic force tensor Y #7) associated with damage can be ob-
tained by using the enthalpy of the damaged materials. This energy equation is
given by

V) (0, ) = _;_0.(5'7) . E-80(g) : ) — @) (89)

where @87 is the specific energy due to kinematic hardening. E~¥") is the
damaged elastic compliance tensor for the subcell. It can be expressed in terms of
the undamaged compliance tensor E¥Y and the damage tensor M such that

E-67 = pp67M . E-(ﬂﬂ . MBM (90)

The thermodynamic force Y87 of the subcell (37) is given as the partial derivative
of enthalpy of the damaged material equation (89) with respect to the second order
damage tensor @7 in the following expression

(91)

Making use of equations (89) and (90) in equation (91), one can write the thermo-
dynamic force Y#7) explicitly (Voyiadjis and Park) [26] as follows

(67)
VT = SO EGIMINoET + o MEMETL N TS @)

If the material in the subcell (87) is elastic, one can easily see that the gradual
degradation of the elastic material in the corresponding subcell is caused only
through damage and consequently no plastic dissipation occurs in the material,
that is I1¢ = 0 in equation (69). A similar procedure is followed as outlined before
to investigate the damage evolution for elastic materials.
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4.5 Overall Damaged Stiffness Tensor for the Model

In this section, the elasto-plastic constitutive model for the damaged multiphase
composite medium is obtained. The procedure can be outlined by the following
steps. First one obtains the subcell (local) damage quantities in their respective
damaged configuration C#") from their undamaged relations such as, stress,
strain concentration tensors, and undamaged effective stiffness of composite. These
quantities can be obtained through the generalized cells model. This is followed
by combining the (Np by N,) subcell constitutive relations by using equation (40)
in conjunction with the concentration factors in the damaged configuration C(#7)
in order to obtain the constitutive relation of the overall composite system in the
damaged configuration C.

One can start with by substituting equation (44) in equation (40). The

following relation is then obtained. :

1 & 1
o= v ; 2; v, [m®7] . &4 (93)

=] =

The term %" in equation (93) is replaced with the relation in equation (3),

where the fourth order effective tensor €*” in the effective configuration is to be
replaced by the corresponding stiffness tensor depending on the properties of the
material in the respective subcells. The resulting expression is written as follows

Ns N,
1 - = .
o= VZva.,[m(ﬁ")] Lol B (94)
p=1 y=1
By substituting equation (50) and (52) into (94), finally one can obtain the follow-
ing relation
1 8 1
* - ~ ﬁ -1 .
&= V}:Zvﬁ,{[m(ﬂ")] ¥ oAl [m¥7)] } : ABY ;¢ (95)
B=1 r=1
or
c=C:é . (96)
where C represents the instantaneous overall stiffness tensor of the multiphase
composite medium in the damaged configuration C, and is given by
1 L 1 1
= - BN~ @B | [ (BT, A8
C_szvp,[m M~ P [mBN]T : ABY (97)
f=1 r=1
From equation (97), one concludes that the overall stiffness tensor in the damaged

configuration C can be expressed through its subcell (local) stiffness tensors and
strain concentration factors in the damaged configuration C¥7).

20



5 Numerical Simulation of the Model

The numerical implementation of the proposed model is done for the special
case of the unit cell model. The applicability of the incremental damage model is
assessed herein by using the unidirectional metal matrix composite material. The
damaged response of the subcells as well as for the overall composite system is
obtained.

The unit cell model used here assumes that the unidirectional array of
fibers(SiC) extending in the X; direction is elastic and isotropic while the ma-
trix (Ti-14A1-21Nb) is elasto-plastic work-hardening material and constitutes the
three subcell regions around the fiber. Table 1 gives the material properties of
this composite. The loading is assumed applied incrementally along the fiber di-
rection and damage is checked only for the elastic region. Plastic deformations
are ignored in this example and is the topic of the companion paper by Voyiadjis
and Deliktas, (1997) .The representative unit cell used here can be described us-
ing non-dimensional quantities and the subcell volume fractions can be given as a
function of its non-dimensional quantities (h,, h2, £1, €2 and h, £) such that

S11) o %1 D= l’_lh% (98)
) = _hihi_l_ . ) = -’%% (99)

These non dimensional quantities can be related to the volume fractions of the
fiber and matrix as follows

_hfi bt bbbk
Y - he
The relations between h, and ¢; , h and £ are known. The above non-dimensional
quantities can be easily calculated from the phase volume fractions.
In this work for simplicity, the fiber and the unit cell are assumed square
ie hy = £, and h = £. From this assumption one can find the non-dimensional
quantities in terms of the phase volume fractions as follows

h=Vd h=1-Vd (101)

(100)

Once the non-dimensional quantities are determined, the next step is to follow
the procedure outlined in section (3.1) in order to obtain the strain concentration
tensor AP of the subcells and the corresponding overall effective stiffness tensor
€ in the undamaged configuration. One can easily observe that in equation (27),
the strain vector €, is reduced from (Ng N, by 1) to a (24 by 1) vector form. The
matrix A, becomes a (24 by 6) matrix and can be partitioned into four, (6 by 6)
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matrices where each one of them represents the strain concentration matrix of the
corresponding subcell. This matrix is given as follows

[ 1 0 0 0 0
Ay Axp Ay 0 0
A6 - Azy Az Az 0 O
0 0 0 Ay O
0 0 0 0 Ag
| 0 0 0 0 0 Asc

More elaborate information about the strain concentration matrix can be found in
references [1, 17].

The damage evolution for the subcell of the proposed model is performed by
following the formulation in section(4.4). The tensorial manipulation is preferred
in the numerical solution in order to get more elaborate and consistent results. In
the damage analysis of materials, the main objective is to satisfy the consistency
condition (g = 0) at any state of damage. This phenomenon can be explained as
follows. Loading of the material by an increment of stress in the damaged state
causes the stress tensor to move to the subsequent damage surface, which defines
the boundary of the current undamaged region and can be expressed by equation
(77). A this state g is only a function of the three variables o, ¢ and . If the
stress point lies within the undamaged region, no damage takes places. i.e. ¢ =0
and k = 0. On the other hand if the state of stress at this point is increased by
an increment of stress, the current state of stress will not be in equilibrium such
that g(o + do, @, k) > 0 which would mean that the current stress point has left
the damage surface, which is impossible.

In order to bring the stress point back on the damage surface, an increment
of damage d¢ and dk are induced by equation (63) and (87) respectively. The
current damage surface g(o + de, ¢ + d, k + dx) = 0 will then be satisfied.

The numerical solution investigates the damage evolution for each subcell
separately by using different damage parameters for different constituents of the
metal matrix composite. Small stress increments are applied along the fiber di-
rection. These damage parameters for the matrix and fiber are given in Table
2.

= (87)

-~ (102)

O OOCOOo

In this work, three subsequent configurations, the initial undeformed/undamaged
C,, the damaged C and undamaged/deformed C are shown in Figure 4. In the
one dimensional state of stress, the relation between the scalar value of the overall
damage and the subcell damage can be obtained by assuming that the volume
fractions of the material in the initial configuration configuration C, and in the
damaged configuration C to be the same. The volume fractions for these three
configurations are given as follows

A8 AB) AB)
Co = = E=—= (103)

A, A A
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where ¢, = c is assumed. One can express the total area of each configuration as
a sum of the areas of the subcells such that

2 2 2
A=Y A A=) A A=) 4 (104)
Br=1 B=1 B8.7=1
Making use of equation (31) in (104), one can obtain the following relation
2
(1-¢)A= Y (1-¢¥)Aa8 (105)
Br=1

By dividing both sides of above equation by A and simplifying, the following
expression is obtained

2 (B7)
=Y Elgo (106)
B

=1

if the term -A—(}’)- is replaced by the initial volume fraction c,, the above equation
yields the following expression

2
é= Z co BN g7 (107)
B=1

The program output gives the damage response of the material in each subcell
as well as the overall. In Figure 5, different values for the parameter v are used
to plot the damage criterion, g, versus the stress in order to study the sensitivity
and robustness of this parameter. For the range of values used here 1.8X1073
to 8X10~4 the behavior of the parameter is quite robust. In Figure 6 different
values for the parameter v are used in order to plot the damage variable ¢ versus
o for the subcells (12) and (22). These subcells are chosen in order show how
the damage can vary in each subcell even though both cells may have the same
material properties. This implies that the boundary and geometry conditions are
effective in analyzing the damage of the subcells.

In Figures 7 and 8 the variation of parameters 7 and £ is studied by plotting
the damage versus the stress. It is observed that a 0.2 change between the different
values of 7 is more sensitive to the damage behavior of the material than a difference
in £ values of 0.05. The corresponding parameters 7 and £ are evaluated for the
fiber in subcell (11). It is observed that for 7 values between 0.1 and 0.06 and for
¢ values between 0.48 and 0.52, the material is quite sensitive to damage, which is
indicated in Figures 9 and 10 respectively.

In Figure 11 the damage versus the stress is plotted for the different subcells
together with the overall damage in order to study the local versus the overall rela-
tion. The model gives the expected results such that the overall damage behavior
is the average of the local ones.
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Finally, the stress strain curves for the subcells and for the overall compos-
ite are plotted and compared with their undamaged curves in Figure 12. It is clear
that there is a reduction in the stiffnesses of the material with an accompanying
non linear behavior after the damage is initiated in the material.

6 Summary and Conclusions

The main objectives of this work is to incorporate damage in the generalized
cells model in order to predict the elasto-plastic damaged behavior of the metal
matrix composites, and also to investigate the applicability and reliability of both
the generalized cells model and the incremental damage model. The example
solved in the previous section demonstrates the ability to properly interpret damage
through the proposed approach.

The proposed study can be summarized as follows. The undamaged consti-
tutive relations are obtained using the generalized cells model. This model imposes
the continuity of the displacement and traction rates at the interfaces on the aver-
age basis. For elasto-plastic materials within the subcell, a von Mises yield criterion
with an associated Ziegler Prager kinematic hardening rule is used here in order to
obtain the undamaged elasto-plastic stiffness of the material in the corresponding
subcell. The fourth order damage tensor M and the incremental damage tensor
m are introduced for each subcell separately (rather than a two phase). The
undamaged quantities are then transformed in to the corresponding damaged ones
by using the damage tensors.

The anisotropic damage criterion is used here and the damage evolution
of each subcell is considered separately.. The challenging part of this work is to
evaluate the eighth order damage tensor. Another important part in this work is
to to satisfy the consistency condition at any increment of loading in the damage
state. In this work, the eighth order tensor is calculated correctly by using MAPLE.
The consistency condition is satisfied by using the numerical solution procedure
outlined previously Finally the overall damaged stiffness tensor for the model is
obtained in terms of its subcell damaged constitutive relations.

The numerical solution is performed for the case of a unit cell in the elas-
tic domain by applying a monotonic increment of load. The proposed work is
computationally efficient in predicting the damaged behavior of the material. The
applicability and reliability of the incremental damage model has been established.
Using the generalized cell model allows one to predict more accurately the damage
in the subregions as well as in the overall composite.

In this work an example pertaining to the elastic analysis of a single lam-
ina is presented. In Part II of the companion paper of this work (Voyiadjis and
Babur, [11]), the proposed model is used for the elasto-plastic analysis with dam-
age for both a single lamina and laminated plates. The numerical results are also
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Table 1: Material Properties

Matrix(1i-14A1-21Nb) | Fiber(SiC)

Modulus — 8X10* Mpa 41X10° Mpa
Poisson’s Ratio 0.30 0.22
Initial Volume Fraction 0.65 0.35

Table 2: Local Damage Parameters

Matrix Damage | Fiber Damage |

m 0.08 0.06 |

T 0.08 0.06

s 0.08 0.06

& 0.55 0.52

& 0.55 0.52

& 0.55 0.52

2 0.0013 0.001

vy 0.0013 0.001

V3 0.0013 0.001

compared with experimental data.
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